Table 2: Comparison of ranks of each method according to its performance shown in Tab. 1.
Method e ≤ 0.05 e ≤ 0.10 e ≤ 0.15 e ≤ 0.20 e ≤ 0.25 avg. rank
(Asadifard and Shanbezadeh, 2010) 9 7 8 7 10 8.2
(Kroon et al., 2008) 5 6 – – 2 4.3
(Valenti and Gevers, 2008) 3 9 10 6 8 7.2
(Valenti and Gevers, 2008) 1 4 6 3 3 3.4
(T
¨
urkan et al., 2007) 13 13 5 1 1 6.6
(Campadelli et al., 2006) 6 8 9 8 9 8.0
(Niu et al., 2006) 4 3 2 4 7 4.0
(Chen et al., 2006) – 5 – – 11 8.0
(Asteriadis et al., 2006) 10 10 7 5 5 7.4
(Hamouz et al., 2005) 7 12 12 9 14 10.8
(Zhou and Geng, 2004) – – – – 12 12.0
(Cristinacce et al., 2004) 8 1 1 3 6 3.8
(Behnke, 2002) 12 7 4 2 4 5.8
(Jesorsky et al., 2001) 11 11 11 10 13 11.2
our method 2 2 3 4 4 3.0
REFERENCES
Asadifard, M. and Shanbezadeh, J. (2010). Automatic adap-
tive center of pupil detection using face detection and
cdf analysis. In Proceedings of the IMECS, volume I,
pages 130–133, Hong Kong. Newswood Limited.
Asteriadis, S., Asteriadis, S., Nikolaidis, N., Hajdu, A., and
Pitas, I. (2006). An eye detection algorithm using
pixel to edge information. In Proceedings of the 2nd
ISCCSP, Marrakech, Morocco. EURASIP.
Behnke, S. (2002). Learning face localization using hi-
erarchical recurrent networks. In Proceedings of the
ICANN, LNCS, pages 135–135. Springer.
B
¨
ohme, M., Meyer, A., Martinetz, T., and Barth, E. (2006).
Remote eye tracking: State of the art and directions
for future development. In Proceedings of the 2nd
COGAIN, pages 10–15, Turin, Italy.
Campadelli, P., Lanzarotti, R., and Lipori, G. (2006).
Precise eye localization through a general-to-specific
model definition. In Proceedings of the 17th BMVC,
volume I, pages 187–196, Edingburgh, England.
Chen, D., Tang, X., Ou, Z., and Xi, N. (2006). A hierar-
chical floatboost and mlp classifier for mobile phone
embedded eye location system. In Proceedings of the
3rd ISNN, LNCS, pages 20–25, China. Springer.
Cristinacce, D., Cootes, T., and Scott, I. (2004). A multi-
stage approach to facial feature detection. In Proceed-
ings of the 15th BMVC, pages 277–286, England.
Hamouz, M., Kittler, J., Kamarainen, J., Paalanen, P.,
K
¨
alvi
¨
ainen, H., and Matas, J. (2005). Feature-based
affine-invariant localization of faces. IEEE Transac-
tions on PAMI, 27(9):1490.
Hansen, D. and Ji, Q. (2010). In the eye of the beholder: A
survey of models for eyes and gaze. IEEE Trans. on
PAMI, 32(3):478–500.
Jesorsky, O., Kirchberg, K., and Frischholz, R. (2001). Ro-
bust face detection using the Hausdorff distance. In
Proceedings of the 3rd AVBPA, LNCS, pages 90–95,
Halmstad, Sweden. Springer.
Kothari, R. and Mitchell, J. (1996). Detection of eye loca-
tions in unconstrained visual images. In Proceedings
of the IEEE ICIP, volume 3, pages 519–522. IEEE.
Kroon, B., Hanjalic, A., and Maas, S. (2008). Eye localiza-
tion for face matching: is it always useful and under
what conditions? In Proceedings of the 2008 CIVR,
pages 379–388, Ontario, Canada. ACM.
Niu, Z., Shan, S., Yan, S., Chen, X., and Gao, W. (2006).
2d cascaded adaboost for eye localization. In Proceed-
ings of the 18th IEEE ICPR, volume 2, pages 1216–
1219, Hong Kong. IEEE.
T
¨
urkan, M., Pard
`
as, M., and C¸ etin, A. E. (2007). Human
eye localization using edge projections. In Proceed-
ings of the 2nd VISAPP, pages 410–415. INSTICC.
Valenti, R. and Gevers, T. (2008). Accurate eye center lo-
cation and tracking using isophote curvature. In Pro-
ceedings of the CVPR, pages 1–8, Alaska. IEEE.
Viola, P. and Jones, M. (2004). Robust real-time face detec-
tion. IJCV, 57(2):137–154.
Zhou, Z. and Geng, X. (2004). Projection functions for eye
detection. Pattern Recognition, 37(5):1049–1056.
VISAPP 2011 - International Conference on Computer Vision Theory and Applications
130