MEAN SHIFT OBJECT TRACKING USING A 4D KERNEL AND LINEAR PREDICTION

Katharina Quast, Christof Kobylko, André Kaup

2011

Abstract

A new mean shift tracker which tracks not only the position but also the size and orientation of an object is presented. By using a four-dimensional kernel, the mean shift iterations are performed in a four-dimensional search space consisting of the image coordinates, a scale and an orientation dimension. Thus, the enhanced mean shift tracker tracks the position, size and orientation of an object simultaneously. To increase the tracking performance by using the information about the position, size and orientation of the object in the previous frames, a linear prediction is also integrated into the 4D kernel tracker. The tracking performance is further improved by considering the gradient norm as an additional object feature.

References

  1. Bradski, G. (1998). Computer vision face tracking for use in a perceptual user interface. Intel Technology Journal, 2:12-21.
  2. Collins, R. T. (2003). Mean-shift blob tracking through scale space. In Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, volume 2, pages 234-240.
  3. Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward feature space analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 24:603-619.
  4. Comaniciu, D., Ramesh, V., and Meer, P. (2003). Kernelbased object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 25:564-575.
  5. Kalal, Z., Matas, J., and Mikolajczyk, K. (2010). PN learning: Bootstrapping binary classifiers by structural constraints. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on, pages 49-56. IEEE.
  6. Qifeng, Q., Zhang, D., and Peng, Y. (2007). An adaptive selection of the scale and orientation in kernel based tracking. In Proc. IEEE Conference on Signal-Image Technologies and Internet-Based Systems, pages 659- 664.
  7. Scott, D. W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. Wiley-Interscience.
Download


Paper Citation


in Harvard Style

Quast K., Kobylko C. and Kaup A. (2011). MEAN SHIFT OBJECT TRACKING USING A 4D KERNEL AND LINEAR PREDICTION . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011) ISBN 978-989-8425-47-8, pages 588-593. DOI: 10.5220/0003327305880593


in Bibtex Style

@conference{visapp11,
author={Katharina Quast and Christof Kobylko and André Kaup},
title={MEAN SHIFT OBJECT TRACKING USING A 4D KERNEL AND LINEAR PREDICTION},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)},
year={2011},
pages={588-593},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003327305880593},
isbn={978-989-8425-47-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2011)
TI - MEAN SHIFT OBJECT TRACKING USING A 4D KERNEL AND LINEAR PREDICTION
SN - 978-989-8425-47-8
AU - Quast K.
AU - Kobylko C.
AU - Kaup A.
PY - 2011
SP - 588
EP - 593
DO - 10.5220/0003327305880593