
Perspectives in Semantic Interoperability

Raúl Garcı́a-Castro1 and Asunción Gómez-Pérez2

Ontology Engineering Group
1Departamento de Lenguajes y Sistemas Informáticos e Ingenierı́a Software

2Departamento de Inteligencia Artificial
Facultad de Informática, Universidad Politécnica de Madrid, Madrid, Spain

Abstract. This paper describes the problem of semantic technology interoper-
ability from two different perspectives. First, from a theoretical perspective by
presenting an overview of the different factors that affect interoperability and,
second, from a practical perspective by reusing evaluation methods and applying
them to six current semantic technologies in order to assess their interoperability.

1 Introduction

Due to the high heterogeneity in semantic technologies, achieving interoperability be-
tween the growing number of semantic technologies is not straightforward. Further-
more, the real interoperability capabilities of the current semantic technologies are un-
known and this hinders the development of semantic systems, either when designing
their interactions with other systems or when selecting the right semantic components
to be used inside a system.

This converts interoperability assurance and evaluation into two key needs when
developing semantic systems. These needs are currently unfulfilled mainly due to the
lack of updated information on the interoperability of existing semantic technologies.

The goal of this paper is to describe in detail the problem of interoperability between
semantic technologies from a theoretical perspective, by presenting an overview of the
different factors that affect interoperability, and also from a practical one, by using
existing evaluation methods and applying them to six current semantic technologies to
assess their interoperability.

One of the pillars to base interoperability upon is standards, such as the RDF(S) and
OWL ontology language specifications defined in the W3C. Hence, the conformance
of semantic technologies to these standards is a main characteristic to evaluate when
gathering information about their interoperability.

This paper is structured as follows. Section 2 provides an overview of the problem
of interoperability between semantic technologies. Section 4 describes two approaches
used to evaluate the conformance and interoperability of six different semantic tech-
nologies; the results of these evaluations are presented in sections 5 and 6, respectively.
Finally, section 7 draws some conclusions from the work presented in this paper.

García-Castro R. and Gómez-Pérez A..
Perspectives in Semantic Interoperability.
DOI: 10.5220/0003346700130022
In Proceedings of the International Workshop on Semantic Interoperability (IWSI-2011), pages 13-22
ISBN: 978-989-8425-43-0
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



2 Semantic Technology Interoperability

According to the IEEE, interoperability is the ability of two or more systems or compo-
nents to exchange information and to use this information [1]. Duval proposes a similar
definition by stating that interoperability is the ability of independently developed soft-
ware components to exchange information so they can be used together [2]. For us,
interoperability is the ability that semantic systems have to interchange ontologies and
use them.

One of the factors that affects interoperability is heterogeneity. Sheth [3] classifies
the levels of heterogeneity of any information system into information heterogeneity
and system heterogeneity; in this paper, only information heterogeneity (and, therefore,
interoperability) is considered. Furthermore, interoperability is treated in this paper in
terms of knowledge reuse and must not be confused with the interoperability problem
caused by the integration of resources, the latter being related to the ontology alignment
problem [4].

The main ontology management functionalities of semantic systems that are related
to interoperability are the following:

– Storing Ontologies. Semantic systems need to store the ontologies they use, either
if these ontologies define their main data model or if they are used as information
objects.

– Operating over Ontologies. These stored ontologies need to be further processed
(e.g., modified, visualised) to fulfil the system functionalities.

– Importing Ontologies. Semantic systems need mechanisms to import ontologies
coming from external systems.

– Exporting =ntologies. Related to the previous item, semantic systems also require
a means to export ontologies to other external systems.

These functionalities are usually implemented by different components in the sys-
tem. Besides, when developing semantic systems it is frequent to reuse components that
already implement one or several of these functionalities. For example, to import and
export ontologies using some ontology management framework (e.g., Jena) and even to
reuse this framework for storing the ontologies.

We can identify two types of interoperability depending on whether interoperability
is required inside the semantic system limits or outside it.

– Internal Interoperability. As mentioned above, semantic systems are frequently
developed by reusing components that provide semantic capabilities and, hence,
all the components inside a semantic system should interoperate correctly. Internal
interoperability is achieved by means of specific software developments that guar-
antee interoperability and should be ensured during the development of the system.

– External Interoperability. Semantic systems have to interact with other semantic
systems to perform complex tasks, that is, semantic systems have to interoperate
with external systems. External interoperability is achieved by interchanging on-
tologies by means of a shared resource and requires mechanisms to assess up to
what extent this interoperability can be accomplished.

14



3 Aspects of Interoperability

Semantic technology interoperability is highly affected by the heterogeneity of the
knowledge representation formalisms of the different existing systems, since each for-
malism provides different knowledge representation expressiveness and different rea-
soning capabilities, as it occurs in knowledge-based systems [5].

This heterogeneity can be seen not only in W3C ontology language specifications
where we have different ontology languages: RDF(S), the OWL sublanguages (Lite,
DL and Full) and the OWL 2 profiles (EL, QL and RL), but also in other models used
to represent ontologies, such as the Unified Modeling Language1 (UML), the Ontology
Definition Metamodel2 (ODM), or the Open Biomedical Ontologies3 (OBO) language.
Besides, this heterogeneity does not only appear between different systems; it may hap-
pen that different components inside a system have different knowledge representation
formalisms.

As commented above, we need to interchange ontologies, either between semantic
systems or between the components of a semantic system. Two factors influence this
interchange: the knowledge representation language used by the systems/components
and the way of serializing ontologies during the interchange.

However, the influence of the serialization is not a big issue since, even if we can
find different serializations to be used with an ontology language, it is straightforward
to find a common serialization to interchange ontologies; what makes ontology inter-
changes problematic is the heterogeneity in knowledge representation formalisms pre-
viously mentioned.

The two common ways of interchanging ontologies within semantic systems are
either directly by storing the ontology in the destination system or indirectly by storing
the ontology in a shared resource, such as a fileserver, a web server, or an ontology
repository.

Most semantic systems natively manage a W3C recommended language, either
RDF(S) or OWL, and sometimes both; however, some systems manage other represen-
tation formalisms. If the systems participating in an interchange (or the shared resource)
have different representation formalisms, the interchange requires at least a translation
from one formalism to the other. These ontology translations from one formalism to
another formalism with different expressiveness cause information additions or losses
in the ontology, once in the case of a direct interchange and twice in the case of an
indirect one.

4 Evaluating Semantic Technology Interoperability

The most common way for the current semantic technologies to interoperate is by
means of a shared resource where the ontology is stored in a certain ontology language.
In order to evaluate interoperability using an interchange language, one characteristic
to consider is the conformance of the tools when dealing with ontologies defined in that

1 http://www.uml.org/
2 http://www.omg.org/ontology/
3 http://obofoundry.org/

15



language.
The next sections describe two approaches to evaluate semantic technology con-

formance and interoperability. Due to the lack of space we do not provide detailed
descriptions of these approaches. These, however, can be found in [6].

4.1 Evaluating Conformance

The conformance evaluation has the goal of evaluating the conformance of semantic
technologies with regards to ontology representation languages, that is, to evaluate up to
what extent semantic technologies adhere to the specification of ontology representation
languages.

During the evaluation, a common group of tests is executed in two steps. Starting
with a file containing an ontology, the execution consists in importing the file with the
ontology into the origin tool and then exporting the ontology to another file.

After a test execution, we have two ontologies in the ontology representation lan-
guage, namely, the original ontology and the final ontology exported by the tool. By
comparing these ontologies we can know up to what extent the tool conforms to the
ontology language. From the evaluation results, the following three metrics for a test
execution can be defined: Execution, which informs of the correct test execution; Infor-
mation added or lost, which shows the information added to or lost from the ontology;
and Conformance, which explains whether the ontology has been processed correctly
with no addition or loss of information.

4.2 Evaluating Interoperability

The interoperability evaluation has the goal of evaluating the interoperability of se-
mantic technologies in terms of the ability that such technologies have to interchange
ontologies and use them.

In concrete terms, the evaluation takes into account the case of interoperability us-
ing an interchange language, that is, when an ontology is interchanged by storing it
in a shared resource (e.g., a fileserver, a web server, or an ontology repository) and is
formalised using a certain ontology language.

During the experiment, a common group of tests is executed in two sequential steps.
Let start with a file containing an ontology. The first step consists in importing the file
with the ontology into the origin tool and then exporting the ontology to a file. The
second step consists in importing the file with the ontology exported by the origin tool
into the destination tool and then exporting the ontology to another file.

After a test execution, we have three ontologies in the ontology representation lan-
guage, namely, the original ontology, the intermediate ontology exported by the first
tool, and the final ontology exported by the second tool. By comparing these ontologies
we can know up to what extent the tools are interoperable. For each of the two steps and
for the whole interchange we have metrics similar to those presented above for evalu-
ating conformance. Therefore, we can use the Execution and Information added and
lost metrics as well as an Interoperability one, which explains whether the ontology has
been interchanged correctly with no addition or loss of information.

16



4.3 Running the Evaluations

In this paper, we aim to evaluate conformance and interoperability using as interchange
languages RDF(S), OWL Lite and OWL DL. To this end, we will use three different test
suites that contain synthetic ontologies with simple combinations of knowledge model
components from these languages.

The RDF(S) and OWL Lite Import Test Suites are described in [7] and the OWL DL
Import Test Suite is described in [8]. These test suites have been defined similarly in a
manual way; the main difference between them is that the OWL DL test suite has been
generated following a keyword-driven process that allows obtaining a more exhaustive
test suite (with 561 tests compared to the 82 tests of the other test suites).

The evaluations described above are part of the evaluation services provided by the
SEALS Platform4, a research infrastructure that offers computational and data resources
for the evaluation of semantic technologies; the mentioned test suites are also included
in that platform. Once a tool is connected to the SEALS Platform, the platform can
automatically execute the conformance and interoperability evaluations. We connected
six well-known tools to the platform and by means of the SEALS Platform executed
the required conformance (for every tool and using every test suite) and interoperability
(for every tool with all the other tools and using every test suite) evaluations.

The six tools evaluated were three ontology management frameworks: Jena (version
2.6.3), the OWL API (version 3.1.0 1592), and Sesame (version 2.3.1); and three ontol-
ogy editors: the NeOn Toolkit (version 2.3.2 using the OWL API version 3.0.0 1310),
Protégé OWL (version 3.4.4 build 579), and Protégé version 4 (version 4.1 beta 209
using the OWL API version 3.1.0 1602). As can be seen, sometimes tools use ontology
management frameworks for processing ontologies.

5 Conformance Results

This section presents the conformance results for the six tools evaluated. Table 1 presents
the tool conformance results for RDF(S), OWL Lite and OWL DL, respectively5. The
tables show the number of tests in each category in which the results of a test can be
classified, depending on whether the original and the resultant ontologies are the same
(SAME), are different (DIFF), or the tool execution fails (FAIL).

As can be observed in these tables, Jena and Sesame present no problems when pro-
cessing the ontologies included in the test suites for the different languages. Therefore,
no further comments will be made on these tools.

Besides, as previously mentioned, the NeOn Toolkit and Protégé 4 use the OWL
API for ontology management.

The version of Protégé 4 evaluated uses a version of the OWL API that is almost
contemporary to the one we evaluated. Hence, after analysing the results of Protégé 4 we

4 http://www.seals-project.eu/seals-platform
5 The tool names have been abbreviated in the tables: JE=Jena, NT=NeOn Toolkit, OA=OWL

API, P4=Protégé 4, PO=Protégé OWL, and SE=Sesame.
6 Not counting additions of owl:Ontology.
7 Not counting additions of owl:NamedIndividual.

17



Table 1. Conformance results.

(a) RDF(S).

Category JE NT OA P4 PO6 SE
SAME 82 0 0 0 68 82
DIFF 0 82 82 82 14 0
FAIL 0 0 0 0 0 0
TOTAL 82 82 82 82 82 82

(b) OWL Lite.

Category JE NT7 OA7 P47 PO SE
SAME 82 78 80 80 73 82
DIFF 0 2 2 2 9 0
FAIL 0 2 0 0 0 0
TOTAL 82 82 82 82 82 82

(c) OWL DL.

Category JE NT7 OA7 P47 PO SE
SAME 561 549 549 549 429 561
DIFF 0 8 11 11 132 0
FAIL 0 4 1 1 0 0
TOTAL 561 561 561 561 561 561

reached the same conclusions that those obtained for the OWL API and the comments
made for the OWL API are also valid for Protégé 4.

However, the version of the NeOn Toolkit evaluated uses a version of the OWL API
that differs in some months to the one we evaluated. In general, from the results of the
NeOn Toolkit we reached the same conclusions that those obtained from the OWL API.
In the next sections we will only comment on those cases where the behaviour of the
NeOn Toolkit and the OWL API differ.

5.1 RDF(S) Conformance

When the OWL API processes RDF(S) ontologies, it always produces different ontolo-
gies because it converts the ontologies into OWL 2. The changes performed over the
ontologies are the following:

– Classes are transformed into OWL classes.
– Individuals are transformed into OWL 2 named individuals.
– Properties are transformed according to their use. If a property either relates two

classes or two individuals or has as domain a class and as range another class (even
if the range class is rdfs:Literal or an XML Schema Datatype), it is transformed
into an OWL object property. If a property either relates one individual with a literal
value or does not have domain and has a range of rdfs:Literal or an XML Schema
datatype, it is transformed into an OWL datatype property. If conditions from these
two groups appear, the property is created both as an object and a datatype property.

– Classes and properties that are no further described (i.e., the only statement made
about a resource is that it is a class or a property) are lost.

– Undefined resources that either appear as domain or range of a property or that have
an instance are defined as OWL classes.

– Classes related by a property or classes related to a literal value using a property
are transformed into OWL 2 named individuals.

– A particular case of the previous case is that of metaclasses (i.e., when the property
that relates the two classes is the rdf:type property). In this case, classes without

18



instances and that are instance of another class are transformed into OWL 2 named
individuals. Besides, classes that have instances and that are instance of another
class are defined both as OWL classes and as OWL 2 named individuals.

When Protégé OWL processes an RDF(S) ontology, the ontology is always created
as an OWL ontology with a randomly generated name8. Regardless of this, different
ontologies are produced when the ontology contains

– A property with an undefined resource as range. The undefined resource is created
as a class.

– A literal value. The literal value is created with a datatype of xsd:string and, there-
fore, it is a different literal. According to the RDF specification, one requirement
for literals to be equal is that either both or neither have datatype URIs9.

5.2 OWL Lite Conformance

When the OWL API processes OWL Lite ontologies, it converts the ontologies into
OWL 2. Since OWL 2 covers the OWL Lite specification, most of the times the OWL
API produces the same ontologies. However, one effect of this conversion is that indi-
viduals are converted into OWL 2 named individuals.

The cases in which the ontologies are different occur when the ontology contains a
named individual related through an object property to an anonymous individual, and
this anonymous individual is related through a datatype property to a literal value. In
this case, the named individual is related through the object property to an anonymous
resource, another anonymous resource is related through a datatype property to a literal
value, and the anonymous individual is not related to anything.

After analysing the results of the NeOn Toolkit we obtained the same conclusions
that were previously presented for the OWL API with one exception. When the ontol-
ogy contains an anonymous individual related to a named individual through an object
property, the execution of the NeOn Toolkit fails.

When Protégé OWL processes an OWL Lite ontology, most of the times it pro-
duces the same ontology. The only exception is when the ontology contains a literal
value. The literal value is created with a datatype of xsd:string and, therefore, it is a
different literal. As mentioned above, one requirement for literals to be equal is that
either both or neither have datatype URIs.

5.3 OWL DL Conformance

When the OWL API processes OWL DL ontologies, it converts the ontologies into
OWL 2. Since OWL 2 covers the OWL DL specification, most of the times the OWL
API produces the same ontologies. However, one effect of this conversion is that indi-
viduals are converted into OWL 2 named individuals.

The cases when the ontologies are different occur when the ontology contains

8 E.g., http://www.owl-ontologies.com/Ontology1286286598.owl
9 http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/#dfn-typed-literal

19



– An anonymous individual related through an object property to some resource or
through a datatype property to a literal value. In this case, an anonymous resource is
related through the property to the resource or literal, and the anonymous individual
is not related to anything.

– A datatype property that has as range an enumerated datatype (i.e., an enumeration
of literals). In this case, an owl:Datatype class is created as well as an anonymous
individual of type owl:Datatype. However, the owl:Datatype class does not exist in
the current specifications; only rdfs:Datatype does.

There is another case in which the test execution fails; when the ontology imports
another ontology, the OWL API does not produce any ontology. This happens because,
as the OWL API cannot find the ontology in the owl:imports property, it does not import
anything. However, the tool should not rely on having full access to an ontology for just
importing such ontology.

After analysing the results of the NeOn Toolkit we obtain the same conclusions as
those previously presented for the OWL API with one exception; when the ontology
contains an anonymous individual related to another anonymous individual through an
object property, the execution of the NeOn Toolkit fails.

When Protégé OWL processes OWL DL ontologies, it usually produces the same
ontology. The cases in which the ontologies are different occur when the ontology con-
tains

– A literal value. The literal value is created with a datatype of xsd:string and, there-
fore, it is a different literal. As mentioned above, one requirement for literals to be
equal is that either both or neither have datatype URIs.

– Class descriptions that are the subject or the object of an rdfs:subClassOf prop-
erty. In these cases, the class description is defined as equivalent to a new class
named “Axiom0”; this new class is the subject or the object of the rdfs:subClassOf
property.

6 Interoperability Results

This section presents the interoperability results of the six tools evaluated. Table 2
presents the tool interoperability results for RDF(S), OWL Lite and OWL DL, respec-
tively10.

The tables show the percentage of tests in which the original and the resultant on-
tologies involved in an interchange are the same. For each cell, the row indicates the
tool origin of the interchange, whereas the column indicates the tool destination of the
interchange.

The conclusions of the behaviour of the tools that can be obtained from the inter-
operability results are the same as those already presented when analysing their confor-
mance. The only new fact obtained while analysing the interoperability results stems
from the interchanges of OWL DL ontologies from the OWL API (or from those tools

10 As in the conformance tables, in these tables we have not counted additions of
owl:NamedIndividual and owl:Ontology.

20



Table 2. Interoperability results.

(a) RDF(S).

JE SE PO NT OA P4
JE 100 100 83 0 0 0
SE 100 100 83 0 0 0
PO 83 83 83 0 0 0
NT 0 0 0 0 0 0
OA 0 0 0 0 0 0
P4 0 0 0 0 0 0

(b) OWL Lite.

JE SE OA P4 NT PO
JE 100 100 98 98 95 89
SE 100 100 98 98 95 89
OA 98 98 98 98 95 89
P4 98 98 98 98 95 89
NT 95 95 95 95 95 87
PO 89 89 89 89 87 89

(c) OWL DL.

JE SE OA P4 NT PO
JE 100 100 98 98 98 76
SE 100 100 98 98 98 76
OA 98 98 98 98 98 75
P4 98 98 98 98 98 75
NT 98 98 98 98 98 75
PO 76 76 75 75 75 76

that use the OWL API, i.e., Protégé 4 and the NeOn Toolkit) to Protégé OWL. In these
interchanges, when the ontology contains an anonymous individual related through a
datatype property to a literal value, Protégé OWL has execution problems.

7 Conclusions

This paper has presented an overview of the problem of interoperability between seman-
tic technologies, first from a theoretical perspective and, second, by evaluating some
tools and describing some of the problems the tools encounter when processing and
exchanging ontologies.

In the results we can observe that all the tools that manage ontologies at the RDF
level (Jena and Sesame) have no problems in processing ontologies regardless of the
ontology language. Since the rest of the tools evaluated are based in OWL or in OWL
2, their conformance and interoperability is clearly better when dealing with OWL on-
tologies.

From these results we can also note that conformance and interoperability are highly
influenced by development decisions. For example, the decision of the OWL API de-
velopers (propagated to all the tools that use it for ontology management) of converting
all the ontologies into OWL 2 makes the RDF(S) conformance and interoperability of
these tools quite low.

The results also show the dependency between the results of a tool and those of the
ontology management framework that the tool uses; using a framework does not isolate
a tool from having conformance or interoperability problems.

However, using ontology management frameworks may help increase the confor-
mance and interoperability of the tools, since developers do not have to deal with the
problems of low-level ontology management. Nevertheless, as observed in the results,

21



this also requires to be aware of the defects contained in these frameworks and to regu-
larly update the tools and thus use their latest versions.

Acknowledgements

This work has been supported by the SEALS European project (FP7-238975). Thanks
to Rosario Plaza for reviewing the grammar of this paper.

References

1. IEEE-STD-610: ANSI/IEEE Std 610.12-1990. IEEE Standard Glossary of Software Engi-
neering Terminology. IEEE (1991)

2. Duval, E.: Learning technology standardization: Making sense of it all. International Journal
on Computer Science and Information Systems 1 (2004) 33–43

3. Sheth, A.: Changing focus on interoperability in information systems: From system, syntax,
structure to semantics. In: Interoperating Geographic Information Systems. Kluwer (1998)
5–30

4. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer-Verlag (2007)
5. Brachmann, R., Levesque, H.: A Fundamental Tradeoff in Knowledge Representation and

Reasoning. In: Readings in Knowledge Representation. Morgan Kaufmann, San Mateo (1985)
31–40

6. Garcı́a-Castro, R., Grimm, S., Schneider, M., Kerrigan, M., Stoilos, G.: D10.1. Evaluation
design and collection of test data for ontology engineering tools. Technical report, SEALS
Project (2009)

7. Garcı́a-Castro, R.: Benchmarking Semantic Web technology. Volume 3 of Studies on the
Semantic Web. AKA Verlag – IOS Press (2010)

8. Garcı́a-Castro, R., Toma, I., Marte, A., Schneider, M., Bock, J., Grimm, S.: D10.2. Ser-
vices for the automatic evaluation of ontology engineering tools v1. Technical report, SEALS
Project (2010)

22


