chitecture, a classical proportional control law based
on point features was considered. For a better sta-
bility of the control law, the RDI provide a feedback
(the current gripper pose) that are used to estimate the
depths of the point features, thus generated the inter-
action matrix. The experimental results revealed good
robustness and stability for the real-time image based
servoing architecture designed.
ACKNOWLEDGEMENTS
This paper was supported by the project PERFORM-
ERA ”Postdoctoral Performance for Integration in the
European Research Area” (ID-57649), financed by
the European Social Fund and the Romanian Govern-
ment.
REFERENCES
Blomdell, A., Bolmsj, G., Brogrdh, T., Cederberg, P., Isaks-
son, M., Johansson, R., Haage, M., Nilsson, K., Ols-
son, M., Olsson, T., Robertsson, A., and Wang, J.
(2005). Extending an industrial robot controllerim-
plementation and applications of a fast open sensor
interface. IEEE Robotics and Automation Magazine,
12(3):85–94.
Cederberg, P., Olsson, M., and Bolmsj, G. (2002). Remote
control of a standard abb robot system in real time
using the robot application protocol (rap). In Pro-
ceedings of the International Symposium on Robotics,
ISR2002, Stockholm.
Cervera, E. (2003). Visual servoing toolbox.
http://vstoolbox.sourceforge.net/. Jaume I Uni-
versity.
Chaumette, F. and Hutchinson, S. (2006). Visual servo con-
trol, part i: Basic approaches. IEEE Robotics and Au-
tomation Magazine, 13(4):82–90.
Chaumette, F. and Hutchinson, S. (2007). Visual servo con-
trol, part ii: Advanced approaches. IEEE Robotics and
Automation Magazine, 14(1):109–118.
Corke, P. (2005). Machine vision toolbox. IEEE Robotics
and Automation Magazine, 12(4):16–25.
Hartley, R. and Zisserman, A. (2004). Multiple View Geom-
etry in Computer Vision. Cambridge University Press,
2 edition.
Hutchinson, S., Hagerand, C., and Corke, P. (1996). A tuto-
rial on visual servo control. IEEE Trans. On Robotics
and Automation, 12(5):651–670.
Lazar, C. and Burlacu, A. (2008). Dynamic simulation
model for image based visual servo control systems.
In 11th Int. Conf. on Optimization of Electrical and
Electronic Equipment. OPTIM 2008., pages 185–190,
Brasov, Romania.
Lazar, C. and Burlacu, A. (2009). Visual servoing of robot
manipulators using model-based predictive control.
In 7th IEEE International Conference on Industrial
Informatics. INDIN 2009., pages 690–695, Cardiff,
Wales.
Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. (2003). An
Invitation to 3-D Vision. Springer.
Mansard, N., Remazeilles, A., and Chaumette, F. (2009).
Continuity of varying-feature-set control laws. IEEE
Trans. on Automatic Control, 54(11):2493–2505.
Marchand, E. and Chaumette, F. (2005). Feature track-
ing for visual servoing purposes. Robotics and Au-
tonomous Systems, 52(1):53–70.
Perez-Cisneros, M. and Mora-Galvez, A. (2005). Real-time
robotic visual servoing using reinforcement learning
agents. In Proceedings of the IEEE International Con-
ference on Information and Automation, pages 215–
220.
Siciliano, B., Sciavicco, L., Villani, L., and Oriolo, G.
(2009). Robotics’ Modelling, Planning and Control.
Springer, London.
Stoll, J., Novotny, P., Howe, R., and Dupont, P. (2006).
Real-time 3d ultrasound-based servoing of a surgical
instrument. In Proceedings of the 2006 IEEE Interna-
tional Conference on Robotics and Automation, pages
613–618, Orlando, Florida.
Tamadazte, B., Arnould, T., Dembele, S., Lefort-Piat, N.,
and Marchand, E. (2009). Real-time vision-based mi-
croassembly of 3d memss. In IEEE/ASME Int. Conf.
on Advanced Intelligent Mechatronics, AIM 2009,
pages 88–93, Singapore.
VISAPP 2011 - International Conference on Computer Vision Theory and Applications
510