ble base CAs, with toric or periodic boundaries, so
as to avoid having “weak” areas where the quality of
random numbers is significantly decreased.
REFERENCES
(1983). Users are individuals: individualizing user mod-
els. International Journal of Man-Machine Studies,
18(3):199 – 214.
Abarbanel, H. D. I., Brown, R., Sidorowich, J. J., and
Tsimring, L. S. (1993). The analysis of observed
chaotic data in physical systems. Rev. Mod. Phys.,
65(4):1331–1392.
Bade, S. and Hutchings, B. (1994). Fpga-based stochastic
neural networks-implementation. In FPGAs for Cus-
tom Computing Machines, 1994. Proceedings. IEEE
Workshop on, pages 189 –198.
Berry, H., Gracia P´erez, D., and Temam, O. (2006). Chaos
in computer performance. Chaos, 16:013110.
Bonnin, G., Brun, A., and Boyer, A. (2009). A Low-Order
Markov Model integrating Long-Distance Histories
for Collaborative Recommender Systems. In Interna-
tional Conference on Intelligent User Interfaces (IUI).
Brown, R. (2009). Dieharder prng tests.
Chowdhury, D. R., Sengupta, I., and Chaudhuri, P. P.
(1994). A class of two-dimensional cellular automata
and their applications in random pattern testing. J.
Electron. Test., 5(1):67–82.
Das, A. and Chaudhuri, P. (1993). Vector space theoretic
analysis of additive cellular automata and its appli-
cation for pseudoexhaustive test pattern generation.
IEEE Transactions on computers, 42(3):340–352.
George, M. and Alfke, P. (2000). Xapp210: Lin-
ear feedback shift registers in Virtex devices.
http://www.xilinx.com/support/documentation/
application notes/ xapp210.pdf.
Girau, B. (2004). FPNA: applications and implementations.
In Amos Omondi, J. R., editor, FPGA Implementa-
tions of Neural Networks, pages 43–79. Kluwer Aca-
demic Publishers.
Girau, B., Torres-Huitzil, C., Vlassopoulos, N., and Baron-
Zambrano, J. H. (2010). Reaction-diffusion and
chemotaxis for decentralized gathering on FPGAs. In-
ternational Journal of Reconfigurable Computing, ar-
ticle in press.
Graham, P. and Nelson, B. (1996). Genetic algorithms
in software and in hardware-a performance analysis
of workstation and custom computing machine im-
plementations. In FPGAs for Custom Computing
Machines, 1996. Proceedings. IEEE Symposium on,
pages 216 –225.
Guan, S.-U. and Tan, S. K. (2004). Pseudorandom Num-
ber Generation with Self-Programmable Cellular Au-
tomata. IEEE Transactions on Computer-aided De-
sign of Integrated Circuits and Systems, 23(7):1095–
1101.
Hortensius, P., McLeod, R., and Card, H. (1989). Paral-
lel random number generation for VLSI systems using
cellular automata. IEEE Transactions on Computers,
38(10):1466–1473.
Kier, L., Seybold, P., and Cheng, C.-K. (2005). Modeling
Chemical Systems Using Cellular Automata. Springer.
Marsaglia, G. (1995). Diehard prng tests.
Matsumoto, M. and Nishimura, T. (1998). Mersenne
twister: a 623-dimensionally equidistributed uni-
form pseudo-random number generator. ACM Trans.
Model. Comput. Simul., 8:3–30.
Musti, U., Toutios, A., Ouni, S., Colotte, V., Wrobel Daut-
court, B., and Berger, M.-O. (2010). HMM-based
Automatic Visual Speech Segmentation Using Facial
Data. In Interspeech 2010, pages 1401–1404.
Nandi, S., Kar, B., and Chaudhuri, P. (1994). Theory
and applications of cellular automata in cryptography.
IEEE Transactions on computers, 43(12):1346–1357.
Rabiner, L. (1989). A tutorial on hidden markov models
and selected applications in speech recognition. Pro-
ceedings of the IEEE, 77(2):257 –286.
Rougier, N. P. and Vitay, J. (2005). Emergence of Attention
within a Neural Population. Neural Networks.
Salapura, V. (1994). Neural networks using bit stream arith-
metic: a space efficient implementation. In Circuits
and Systems, 1994. ISCAS ’94., 1994 IEEE Interna-
tional Symposium on, volume 6, pages 475 –478 vol.6.
Stewart, W. J. (2009). Probability, Markov chains, queues,
and simulation: the mathematical basis of perfor-
mance modeling. Princeton University Press.
Tomassini, M. and Perrenoud, M. (2001). Cryptogra-
phy with cellular automata. Applied Soft Computing,
(1):151–160.
Tomassini, M., Sipper, M., and Perrenoud, M. (2000). On
the generation of high-quality random numbers by two
dimensional cellular automata. IEEE Transactions on
computers, 49(10):1146–1151.
van Daalen, M., Jeavons, P., and Shawe-Taylor, J. (1993).
A stochastic neural architecture that exploits dynam-
ically reconfigurable fpgas. In FPGAs for Cus-
tom Computing Machines, 1993. Proceedings. IEEE
Workshop on, pages 202 –211.
Vlassopoulos, N., Fat`es, N., Berry, H., and Girau,
B. (2010). An FPGA Design for the Stochastic
Greenberg-Hastings Cellular Automata. In Interna-
tional Conference on High Performance Computing
& Simulation - HPCS 2010, pages 565–574.
PECCS 2011 - International Conference on Pervasive and Embedded Computing and Communication Systems
404