3.2 Segmentation of Skull Bones
We are interested in the detection of various human
skull bones. Figures 5(c) and 6 show the results of
applying our method on the mesh of a patient who is
shown in Figure 5(b). Thus, the mesh is segmented
into nine areas that represent the different bones.
Following this experience, we noted the
existence of a limited number of mesh points that
were not labeled at the frontal bones and mandible,
while the other bones have been correctly detected.
We can therefore estimate that qualitatively the
results are satisfactory.
Figure 6: (A) Human skull atlas, (b) patient
skull,
(c)
segmentation result of the patient
skull before rigid
registration, (d)
Final segmentation result of the patient
skull.
Figure 7: Result of the segmentation of
the
skull in 6
ossicles.
4 CONCLUSIONS
Mesh segmentation are one of the major problems in
3d image analysis. In this context, we proposed a
solution to divide a given shape into meaningful
parts using atlas projection. It uses a rigid
registration and the elastic registration with TPS to
minimize distortion and uses a proposed “FNN”
algorithm to identify the final mesh parts. The
results are qualitatively very interesting
REFERENCES
Shamir, S. A survey on mesh
segmentation
techniques.
Computer Graphics, 27(6) (2008),
p.
1539-1556.
Bourouis, S., Hamrouni, K.
Multiresolution
mesh
segmentation of mri brain
using
classification and
discrete.Visapp, volume
1
(2008), p.
421-426.
Lon-Page, D. Part decomposition of 3d surfaces
.
Theses (2007).
Commowick, O. Outils de
contourage,
utilisation et
construction
d'atlas
anatomiques:
exemples des
cancers de
la
tête et du cou. Cancer Radiotherapie
(2010), p.
206-212
Delest, S. La segmentation de maillages 3D
en
patchs
surfaciques: applications
et
méthodes. Revue
Electronique
Francophone
d'Informatique Graphique,
Vol. 2, Num.
1
(2008)
Delest, S., Bone, R., Cardot, H.: Etat de
l'art
de la
segmentation de maillage 3d
par
patchs
surfaciques. GTMG,
Valenciennes,
France
(2007).
Delest, S., Bone, R., Cardot, H.
La
segmentation de
maillages polygonaux
en
carreaux surfaciques:
application
et
méthodes. Revue
Electronique
Francophone d'Informatique Graphique
2(1),
(2008),
p.
11-31.
Karni, Z., Gotsman, C. Spectral compression
of
mesh
geometry. Proceedings of the 27th
annual
conference
on Computer graphics
and
interactive techniques
(2000), p.
279-286.
Dominique, B. Méthodologies en
Imagerie
Médicale,
Book, LIP6 – UPMC,
(2008).
S. Katz, M. Mortara, and G. Patan´e Mesh Segmentation
- A Comparative Study SMI '06 Proceedings of the
IEEE International Conference on Shape Modeling
and Applications 2006
Hao Zhang Oliver van Kaick Ramsay
Dyer
Spectral
Mesh Processing
Graphic
s,
Usability
and
Visualization (GrUVi)
Lab,
School of Computing
Science, Simon Fraser University,
Canada
Zheng you Zhang Iterative point matching
for
registration of free-form curves.Book,
1992
Bookstein Fred L. Principal Warps:
Thin-plate
Spline
and decomposition of
deformations
.Transictions on
pattern analysis and
machine
intelligence. Vol 11;
NO
16/
june
1989
K. Rohr, M. Fornefett, and H.S.
Stiehl,
.Approximating
thinplate splines for
elastic
registration: Integration
of landmark
errors
and
orientation attributes. In
Proc.
16th Int. Conf. Information Processing
in
Medical
Imaging, Hungary, June 1999,
LNCS
1613,
pp. 252.265.
Asker M. Bazen and Sabih H. Gerez
Elastic
Minutiae
Matching by Means of
Thin-Plate
Spline Models
University of
Twente,
Department of Electrical
Engineering
P.O.
box 217, 7500 AE
Enschede.
Olivier Coulon, Jean Francois Mangin and Vincent
Frouin Robust Brain Segmentation Using Histogram
Scale-Space Analysis and Mathematical Morphology
MICCAI '98 Proceedings of the First International
Conference on Medical Image Computing and
Computer-Assisted Intervention
a
c
AUTOMATIC MESH SEGMENTATION USING ATLAS PROJECTION AND THIN PLATE SPLINE - Application for
a Segmentation of Skull Ossicles
225