
Arbree, A., Walter, B., and Bala, K. (2010b). Heteroge-
neous subsurface scattering using the finite element
method. IEEE Transactions on Visualization and
Computer Graphics, 99(PrePrints).
Bernabei, D., Ganovelli, F., Pietroni, N., Cignoni, P., Pat-
tanaik, S., and Scopigno, R. (2010). Real-time single
scattering inside inhomogeneous materials. Vis. Com-
put., 26(6-8):583–593.
Biri, V., Michelin, S., and Arques, D. (2006). Real time ren-
dering of atmospheric scattering and volumetric shad-
ows. In Journal of WSGC, pages 65–72.
Blinn, J. F. (1982). Light reflection functions for simula-
tion of clouds and dusty surfaces. In Proceedings of
the 9th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’82, pages 21–29,
New York, NY, USA. ACM.
Cerezo, E., Perez, F., Pueyo, X., Seron, F. J., and Sillion,
F. X. (2005). A survey on participating media render-
ing techniques. The Visual Computer, 21(5):303–328.
Chandrasekhar, S. (1960). Radiative Transfer. Dover Pub-
lications.
Henyey, L. and Greenstein, J. (1941). Diffuse radiation in
the galaxy. Astrophys. Journal, 93:70–83.
Jensen, H. W. and Christensen, P. H. (1998). Efficient sim-
ulation of light transport in scences with participating
media using photon maps. In Proceedings of the 25th
annual conference on Computer graphics and inter-
active techniques, SIGGRAPH ’98, pages 311–320,
New York, NY, USA. ACM.
Lafortune, E. (1996). Mathematical Models and Monte
Carlo Algorithms for Physically Based Rendering.
PhD thesis, Cornell University.
Max, N. L. (1986). Atmospheric illumination and shad-
ows. In Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’86, pages 117–124, New York, NY, USA.
ACM.
Nishita, T., Miyawaki, Y., and Nakamae, E. (1987). A shad-
ing model for atmospheric scattering considering lu-
minous intensity distribution of light sources. SIG-
GRAPH Comput. Graph., 21:303–310.
Premoze, S., Ashikhmin, M., Ramamoorthi, R., and Nayar,
S. K. (2004). Practical rendering of multiple scatter-
ing effects in participating media. In Rendering Tech-
niques, pages 363–373.
Rushmeier, H. E. and Torrance, K. E. (1987). The zonal
method for calculating light intensities in the pres-
ence of a participating medium. SIGGRAPH Comput.
Graph., 21:293–302.
Sillion, F. (1994). Clustering and volume scattering for hier-
archical radiosity calculations. In In Fifth Eurograph-
ics Workshop on Rendering, pages 105–117.
Stam, J. (1994). Stochastic rendering of density fields. In
Proceedings of Graphics Interface 94, pages 51–58.
Sun, B. and Ramamoorthi, R. (2005). A practical analytic
single scattering model for real time rendering. ACM
Trans. Graph, 24:1040–1049.
Zhou, K., Hou, Q., Gong, M., Snyder, J., Guo, B., and
Shum, H.-Y. (2007). Fogshop: Real-time design and
rendering of inhomogeneous, single-scattering me-
dia. In Proceedings of the 15th Pacific Conference
on Computer Graphics and Applications, pages 116–
125, Washington, DC, USA. IEEE Computer Society.
APPENDIX
Phase Function Approximation
The matrix below are in the format:
a
1
a
2
a
3
b
1
b
2
b
3
If 0 ≤ g ≤ 0.2 :
−0.8470 0.6117 1.0004
0.7218 2.2603 0.0009
If 0.2 ≤ g ≤ 0.4 :
−0.3199 0.4128 1.0197
3.1063 1.2475 0.1109
If 0.4 ≤ g ≤ 0.6 :
−0.2697 0.3865 1.0223
9.4069 −4.0092 1.2134
If 0.6 ≤g ≤ 0.8 :
−0.3067 0.4298 1.0096
46.9285 −51.3639 16.1729
If 0.8 ≤g ≤ 0.9 :
−1.1784 1.8440 0.4358
369.6793 −573.3485 227.3450
If 0.9 ≤ g ≤ 0.95 :
−7.5 13.3 −4.7
2829.9 −5022.1 2238.6
If 0.95 ≤ g ≤ 0.99 :
−50 90 −40
78630 −150550 72090
EFFICIENT ANALYTICAL INTEGRATION OF SINGLE SCATTERING FUNCTION
199