
HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES

Casper van Est, Ronald Poelman and Rafael Bidarra
Serious Gaming Centre, Delft University of Technology, Mekelweg 4, 2628 CD, Delft, The Netherlands

Keywords: Scenario editing, Simulation games, Serious games.

Abstract: Although simulation games provide a competetive and safe alternative to real-life training sessions, the
flexibility of adjusting such training sessions to fit the needs of individual trainees is relatively low. The
reason for this is that these games are often delivered as a static product with predefined scenarios that
cannot easily be edited by an instructor. This paper proposes a solution to this dilemma in the form of
scenario editing, which allows instructors to define and edit scenarios, using high-level actions and events
and some basic logic. A prototype scenario editing application was developed and subsequently evaluated,
featuring a graph-metaphor for easily editing scenarios and an interface that allows real-time editing. The
evaluation shows that the chosen approach is applicable and a good starting point for further development.

1 INTRODUCTION

When video games originally came into existence,
their purpose was solely to entertain. Nowadays,
with video games becoming more accepted by the
mainstream, and with more scientific research being
done in this area, a subset of video games called
serious games is being used for business and
educational purposes as well (Smith 2007). One
such application of a so called serious game is as a
replacement of professional training sessions, where
they are being used to educate and train safety
supervisors, medical professionals, police officers,
and other professionals. The advantages of using
such a simulation game to replace real-life training
sessions are numerous; simulation games arenot
expensive, safer, less time consuming and can
potentially offer better learning (Susi, Johannesson
et al. 2007).

However, simulation games are not being used to
their full potential yet. One important issue that
simulation games are currently facing is that the
flexibility of adjusting the virtual training session to
an individual trainee’s needs is relatively low,
compared to a real-life training session.

The fundamental problem with the current
development approach of simulation games is that a
simulation game is handed to the instructor as a
finalised product. In optimal conditions, the
instructor is indirectly involved in the process of
making the game, by defining the training program,

but once the development of the game has finished,
no additional changes can be made to the game, or to
its training program. Some simulation games do
have options for adjustability. However, these
options are still very limited and restrictive in nature.
With these games, the game developer has (perhaps
in consultation with an instructor) prepared a few
options for the instructor, which the instructor can
use to alter the gameplay. While this allows to
instructor to exercise some control over the game’s
scenario, the instructor can only adjust these
predefined settings. Thus, the game is still delivered
as a finalised, static product.

The approach described in this paper aims at
making the training session more adaptable to the
individual trainee’s needs, by providing the
instructor with a Scenario Editor. In this case, the
game developer delivers not one, but two products to
the instructor; the simulation game and an extensive
collection of scenario building blocks (Van Est,
2010). Then, a separate application called the
scenario editor can be used to arrange the scenario
building blocks according to a training program, and
combine them with the simulation game to create an
individual training experience, specific to a certain
trainee. Using the feedback from the training
session, adjustments can then be made to the training
program, by re-arranging the scenario building
blocks. This way, another individual training
experience can be created using the same scenario
building blocks and simulation game. With a large

339van Est C., Poelman R. and Bidarra R..
HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES.
DOI: 10.5220/0003374503390346
In Proceedings of the International Conference on Computer Graphics Theory and Applications (GRAPP-2011), pages 339-346
ISBN: 978-989-8425-45-4
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

collection of building blocks, the variations in
arrangements that can be made are endless. Thus,
the flexibility of adjusting a training scenario is
returned to the instructor. In the following sections,
this paper will discuss this approach in more detail,
and an application example will be presented.

2 PREVIOUS WORK

This section discusses current authoring methods.
These methods can be divided into two categories;
environment authoring and causality authoring. In
environment authoring, the editing environment is
similar to the game world; it provides the user with a
view of the environment which is comparable to the
world as it is presented to the player. In causality
authoring, the instructor operates in a distinctly
different environment than the game world, such as
an abstract graph-based editor.

In environment authoring, the instructor can
directly influence the game’s environment. The
instructor can place assets (objects, characters,
triggers, markers, etc) and move them around. By
placing a number of these assets, and assigning
certain properties to them, the instructor can
influence the course of the scenario. A real world
example of environment authoring is a child playing
in a sandbox: he builds an environment with perhaps
buildings or foliage, places a handful of characters
and then ‘runs’ the scenario. Environment authoring
offers the instructor direct control over specific
assets in a game environment. Thus, it offers the
instructor great and precise power. However, it also
requires the instructor to directly influence the game
world, thus requiring the instructor to have a decent
amount of knowledge about the game world. The
instructor is required to know about game
development concepts such as placing and moving
objects around in a virtual 3D world, using triggers,
materials, etc.

Examples of authoring applications that use
environment editing are UnrealEd, the level editor of
the Unreal 3 engine; and e-Adventure (Moreno-Ger,
Martinez-Ortiz et al. 2005) (Moreno-Ger, Blesius et
al. 2007). UnrealEd was developed by and for
professional game developers, and is as such very
powerful, but also very complex. When using e-
Adventure, on the other hand, creating a game in e-
Adventure is made easier for the instructor by
allowing him to author and execute a game without
any background in programming. The instructor can
author game scenarios and add content to them, such
as objects, characters and conversations. The

authoring application focuses on supporting those
tasks that are specific to the educational domain.
Among these are assessment and adaptation: the
need to track and evaluate the activity of the trainee
and the need to adapt the behaviour of the game to
fit different ranges of trainees, respectively. A
noteworthy feature of e-Adventure is the possibility
to link to other sources of information, to be
accessible during the game.

The functionality offered by e-Adventure is too
limited to be suited for professional game
developers; only one type of game can be created,
that game has to follow certain specific guidelines
and there are little options for customizing the game.
At the same time, the actions required to create a
game using e-Adventure are too detailed to be suited
for non-professional game developers. The user has
to concern himself with technical issues such as
foreground masks, layers, inventory item icons, etc.
Aside from causing the creation process of a game to
take an unnecessarily long time, these options are
overwhelming to a didactic expert with no game
development experience.

The second authoring method is called causality
authoring. This method lets the instructor edit the
causality processes of a scenario, usually by
presenting a graph metaphor. Using this authoring
method, authors can specify causalities such as
‘when the user opens that box, he will receive this
object’. Editing a graph is easier than editing a game
environment, since it requires less technical
knowledge of the author.

Examples of authoring applications that use
causality authoring are Unreal 3’s Kismet editor,
Scribe (Medler and Magerko, 2006), Façade (Mateas
and Stern, 2000), (Mateas and Stern, 2003), Scenejo
(Weiss, Muller et al., 2005), (Spierling, Weiss et al.,
2006), Art-E-Fact (Iurgel, 2004) and SAVEace
(Holm, Stauder et al., 2002). For a discussion on the
strengths and weaknesses of these applications, see
(Van Est, 2010).

Limitations in current authoring methods
provided by game development tools are found to be

 Authoring requires knowledge of gaming
concepts

 Authoring requires too much work
 Authoring systems are designed non-
generically

 Authoring systems offer unfriendly user
interfaces

 Graphs can become too complex
One disadvantage of all current authoring methods is
that none of them offers a generic solution; no
standalone tool exists that allows scenario authoring
to function with any other game development tool.

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

340

This would improve the effectiveness of such a tool,
as it can then be applied in multiple projects.

The graph metaphor used in several high level
scenario authoring applications seems to be a good
fit, since it corresponds well with the user’s concept
of a scenario. However, the interface that is usually
provided can be very complex, especially for non
technical users. An authoring application would
benefit from using more graphical metaphors, such
as icons for pre- and post conditions, as can be found
in tools aimed at children. The main issue with
current authoring methods for the use in simulation
games is that they have not been explicitly designed
for use by a field expert or instructor. These experts
typically have little knowledge of the technical
concepts required in current authoring methods. For
maximum usability, a scenario authoring application
should offer functionality that allows people with
limited experience to easily create or edit a scenario.
Of course, since the scenario editor also needs to be
powerful and support creativity, the tool should offer
considerable depth, allowing the user to create
complex scenarios as well. Perhaps a separation
between basic and advanced features could offer
some improvements to the usability.

3 BASIC APPROACH

The goal of the approach proposed in this paper is to
give an instructor more control over the scenario of a
simulation game. Basically, this can be achieved in
three steps:

1. Represent the scenario of a simulation game
at a more abstract level of scripting.

2. Make the abstracted scenario editable by an
instructor.

3. Communicate the adjustments made by an
instructor to a simulation game.

By seamlessly supporting these steps, one can
enable instructors to make adjustments to abstracted
scenarios, and subsequently communicate these
adjustments to a simulation game.

3.1 Abstraction

First, two levels of scripting were identified. The
first, lowest, level is called the programming level.
The scripts in this level deal with low level concepts,
such as objects, vectors, math functions, etc. The
language used to write a script in this programming
level could be any programming language such as
C++ or UnrealScript.

The second level of scripting is called the
gameplay scripting level, in which the scripts deal
with the objects in a game level. The language used
in the gameplay scripting level is easier to use than
programming languages and could for instance be
UnrealEd’s visual scripting language Kismet
(UnrealEd, 2011).

These two scripting levels, programming and
gameplay scripting, are commonly used to develop
games. In current game development teams,
programmers operate in the lowest scripting level
and write all kinds of scripts on how the engine
should simulate the playing world. Then, gameplay
scripters define what can be called the game’s
behaviour, e.g. how it interacts with the player, in
the gameplay scripting level, as in Fig. 1.

What we propose in this approach is to add a
third level of scripting above the previously
mentioned levels, in which the global scenario of a
game is scripted. We call this third level the scenario
scripting level, and it deals with the scenario of a
game. This high level of scripting is useful because
it allows the instructor to focus on the scenario itself,
without worrying about unnecessary programming
or gameplay issues. For example, an instructor does
not want to be bothered by issues such as which
truck model should be used, how it moves or which
colour it has. All these issues are dealt with in lower
scripting levels, and are defined by one of the game
developers.

Achieving this higher abstracted scripting level
can be done by taking the same abstraction step that
is taken from the programming level to the
gameplay level, but now by applying it from the
gameplay level to the scenario level, as in Fig. 2. In
our approach, we’ve chosen to let the game
developer decide on how to abstract the contents of
the gameplay scripting level to the level of scenario
scripting, just as the programmer decides how to
abstract his code into the gameplay scripting level.
In this way, the game developer is responsible for
creating the content that can be used by the
instructor. In that sense, it is up to the game
developer to choose what information, or meta-data,
is supplied to the instructor, and thus at which level
of abstraction the instructor operates.
Therefore, there is no exact, strict, definition of the
boundary between the scenario scripting level and
the gameplay scripting level, and it can be precisely
defined on a case-by-case basis.

HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES

341

Figure 1: Nodes at the gameplay scripting level are abstractions of scripts at the programming level.

3.2 Editing

The editing actions of the scenario scripting
language are called building blocks, which the
instructor should have at his disposal in the scenario
scripting level. Above, we showed that sections of
gameplay script can together form scenario building
blocks. But which forms can such a building block
take? We start by identifying two entities that are the
most basic building blocks of a scenario script;
actions and events. An action is something that is
performed by the player, while an event is
something that is performed by the game. Together,
these two building blocks allow an instructor to
script a basic scenario. However, with just these two
entities, the instructor is fairly limited in his
expression of a scenario, as he can only create linear
scenarios. In order to create non-linear scenarios, the
instructor also needs to be able to apply some logic
at the level of scenario scripting, such as if-then
statements or other flow control strategies.

Additionally, in some types of games the
instructor might want more detailed control over a
scenario by using variables. At the level of scenario
scripting, a variable can be used for logical
decisions. The use of variables widens the options an
instructor has for creating non-linearity in his
scripts. Whereas without using variables, the
instructor can only base the logic in his script on

whether an action has been performed, with the use
of variables the instructor can also write scripts that
base their logic on how well an action was
performed. Finally, a variety of settings have been
introduced, including the scenario relevant
properties of a game, e.g. the number of pedestrians
in a driving simulation.

3.3 Interfacing

The arrangement and properties of the building
blocks defined above can now be applied in a
simulation game. The actual process of scripting a
scenario can potentially happen in two different
contexts and stages; within a game development
environment, as is the case in gameplay scripting , or
outside of the game development environment, by
utilising a standalone scenario authoring application.
Our approach is based on offering a standalone
authoring application. That way, the process of
scripting a scenario is independent of the specific
game in which the scenario will be used, so the
instructor can learn how to write scripts for one
game and apply this knowledge to other games as
well.

Considering that scenario building blocks are
created from sections of gameplay scripts, we use an
event-based communication between the scenario

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

342

Figure 2: Nodes at the scenario scripting level are abstractions of scripts at the gameplay scripting level.

authoring application and the simulation game. This
system sends messages back and forth when a
building block, in the form of an action or event,
needs to be executed. The game itself is then
responsible for handling all the scripts at the
gameplay scripting and the programming level,
while the scenario authoring application is
responsible for handling the scripts at the scenario
scripting level, including the handling of scenario
logic. By sending messages between the editor and
the game, all communication occurs in real-time.
This allows the instructor to make adjustments to the
scenario, as long as these changes do not corrupt the
scenario.

In conclusion, our approach allows instructors to
exercise control over a scenario by interactively
editing a visual script at the abstracted level of
scenario scripting, using the language of scenario
building blocks. Furthermore, additional control is
given to instructors by allowing them to make real-
time adjustments to a scenario as it is running.

4 PROTOTYPE SCENARIO
EDITOR: SHAI

To evaluate the approach discussed in Section 3, a
prototype scenario editing application was
developed. This Section briefly discusses the design
and implementation of that prototype, called Shai.

The Library panel on the left presents the variety
of nodes that are available to the user. These nodes
can be dragged from the Library and dropped onto
the large Scenario panel on the right. Nodes in the
Library are grouped by their type; event nodes,
action nodes, logic nodes, time-based nodes and
miscellaneous nodes. Event and action nodes are
specific to a certain game, while the other nodes
types can be applied in any game. The node types
are corresponding to the entities discussed in Section
3.

The main panel of the editor is the Scenario
Panel. Here, nodes can be linked together to form a
scenario. Starting the playback of a scenario is
straightforward; by simply pressing the play button,
the application boots up the game and the scenario
begins at the (requisite) ‘start game’ node. While a
scenario is being played, the instructor is free to
move nodes around and add or remove new nodes,
as long as this does not invalidate the scenario (such
an invalidation could be detected by the application,
but is not available in the current implementation).

Communication between Shai and the game is
performed using a separate application, called the
Communicator. Messages sent from Shai to the
game are first handled by the Communicator. The
Communicator can read these messages and decide
what to do with them. For instance, it can
simply forward the messages to any or all connected
game engines, or it can write to a debug log, perhaps
by forwarding them to a database, etc.

HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES

343

Figure 3: Interface of the prototype scenario authoring system Shai.

The Communicator can also forward messages from
the game engine to Shai. The Communicator can
handle multiple connections, both from Shai and
(any type of) game engines, using a TCP/IP
connection.

By separating the communicator and the scenario
authoring application, the author application is
shielded off from the game engine. This makes the
functionality of the authoring application
independent of the type of game engine used, which
improves the applicability of Shai.

5 APPLICATION EXAMPLE:
SUPERVISOR

This section demonstrates the power of our
approach, using Shai in combination with a concrete
simulation game called Supervisor. We also discuss
how that game needed to be set up properly by the
game developer, in order for it to be compatible with
Shai.

5.1 Supervisor

The Supervisor simulation game was commissioned
by Shell and developed at TU Delft. It is designed to
be used as a virtual alternative to
parts of real-life training sessions. In this game, the
player (or trainee) assumes, in first person
perspective, the role of a safety supervisor at an oil

drilling site. The trainee is expected to handle
hazardous situations, watch personnel and take care
of health, safety and environment regulations. The
instructor, or sometimes called the facilitator, is
responsible for deploying the game to teach trainees
how to become a competent safety supervisor.

Supervisor represents a prime example of the
issues that can be found in simulation games. The
instructors at Shell had limited influence on the
development of the game; they provided information
on what type of scenarios should be developed, but
once the game was finished, its use was limited to
whatever scenarios the game developers had
implemented. The instructor, who then used the
game to perform training sessions, had only the
choice of a handful of different scenarios. Therefore,
the use of the game was very limited.

Therefore, we made Shai use Supervisor as a test
case, as Shai can be used to improve the use of such
as game by allowing the instructor to make changes
to the game’s scenario, thus expanding the range of
possible training sessions.

5.2 Implementation

Before Shai can be used in combination with
Supervisor, the game needs to be able to properly
communicate with Shai. In the case of Supervisor,
which was developed using the Unreal 3 Engine, this
required two steps. First, a programmer needed to
write code for Kismet nodes, so they could be used
in the second step by the gameplay scripter.

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

344

Figure 4: A screenshot of Supervisor, as seen through the viewport of the player.

The second step is taken when the programmer
has finished writing the code for the Kismet nodes;
the nodes can then be placed in Kismet. This is done
by the gameplay scripter. He will decide at which
points in the game’s logic messages will be sent
back and forth between Shai and the game.

Thus, the slight overhead required to make
Supervisor communicate with Shai is relatively
little. On the programming side, there are only a
handful of classes that need to be written, and their
content is trivial. On the Kismet side, however,
placing the extra nodes can be a bit tiresome.
However, when this is performed while the level is
being created (as opposed to afterwards, as was the
case in developing this prototype), the extra work is
bearable. Moreover, it helps the designer in keeping
the Kismet sequences organized, and guides him
into using modular design, which is always
beneficial.

6 EVALUATION AND RESULTS

As discussed before, an application as Shai is aimed
at non-programmers, such as instructors. The
prototype, therefore, needs to be evaluated by its
users. For this purpose, an evaluation plan was
developed and executed featuring a tutorial for users
to follow and a questionnaire to fill in.

The evaluation was performed using a

combination of several evaluation methods. Mainly,
the user was asked to fulfil a tutorial, in which he
was asked to perform several tasks using the
prototype. Secondly, the user was interviewed, using
both a questionnaire, and a discussion, to find out
about his experience with the prototype.

The prototype was tested by several field experts,
including experts from Shell, who are familiar with
the Supervisor game, and serious game industry
experts, who are familiar with scenario editing
challenges. The goal of this session was to evaluate
feature completeness, adequacy of scenario
representation and usability. For more details on the
evaluation process, see (Van Est, 2010).

The general consensus amongst the testers was
that this scenario editor presents significant
advantages in helping instructors develop scenarios.
However, the domain experts who already had some
experience in scenario development noted that this
application could best be used in the preparation
phase of using scenarios, because the real-time
adjustment options seemed to be too complex in the
current form. When large, complex scenarios are
involved, it can be very difficult for the user to fully
comprehend the long-term effects of changes he is
making in the scenario, especially under the
pressures of a running game session.

While the current features offered in the
prototype, such as the use of a visual node-based
causality chain, were well received by the domain

HIGH-LEVEL SCENARIO EDITING FOR SERIOUS GAMES

345

experts, they still had some suggestions on possible
improvements, which can be considered as valuable
recommendations. These included suggestions for
conversation nodes, nodes that can retrieve
information from the game, sub-graphing options
and 3D editing with object placing. Finally, Shai’s
usability was rated poorly, which implies that
significant improvements should be made in this
area, if the prototype is considered for practical use.

7 CONCLUSIONS

This project had as its main goal to let the instructor
exercise control over the scenarios of serious games
by writing a script at the abstracted level of scenario
scripting, using the language of scenario building
blocks. More control is given to the instructor by
allowing him to make real-time adjustments to the
scenario as well. A prototype has shown that this
approach is applicable and promising.

Now, we hope to see this project functioning as a
starting point for future research on developing
approaches that help instructors and other didactic or
creative experts gain expressive power in the
exciting and developing field of games. The current
implementation of Shai offers the basics of such an
approach, and with the right improvements, it could
very well be used to give instructors more control
over scenarios in simulation games.

REFERENCES

Holm, R., E. Stauder, et al. (2002). "A Combined
Immersive and Desktop Authoring Tool for Virtual
Environments." IEEE Virtual Reality Conference 2002
(VR 2002).

Iurgel, I. (2004). "From Another Point of View: Art-E-
Fact." Proceedings of the Second International
Conference, TIDSE 2004.

Mateas, M. and A. Stern (2000). "Towards Integrating
Plot and Character for Interactive Drama." Socially
Intelligent Agents: The Human in the Loop. Papers
from the 2000 AAAI Fall Symposium.

Mateas, M. and A. Stern (2003). "Façade: An Experiment
in Building a Fully-Realized Interactive Drama."
Game Developers Conference (GDC ’03).

Medler, B. and B. Magerko (2006). "Scribe: A Tool for
Authoring Event Driven Interactive Drama."
Proceedings of the Third International Conference,
TIDSE 2006.

Moreno-Ger, P., C. Blesius, et al. (2007). "Rapid
Development of Game-like Interactive Simulations for
Learning Clinical Procedures." Proceedings of the

Fifth International Game Design and Technology
Workshop and Conference (GDTW2007).

Moreno-Ger, P., I. Martinez-Ortiz, et al. (2005). "The <E-
Game> Project: Facilitating the Development of
Educational Adventure Games." Proceedings of the
5th International Conference on Entertainment
Computing (ICEC 2005).

Smith, R. (2007). "The Five Forces That Are Driving the
Adoption of Game Technologies within Multiple
Established Industries." Games and Society Yearbook.

Spierling, U., S. A. Weiss, et al. (2006). "Towards
Accessible Authoring Tools for Interactive
Storytelling." Proceedings of the Third International
Conference, TIDSE 2006.

Susi, T., M. Johannesson, et al. (2007). "Serious Games -
An Overview."

UnrealEd (2011). Epic Games, http://udk.com/ (last
accessed 06/01/2011)

Van Est, C. (2010) "Shai: Scenario Editing for Simulation
Games", MSc Thesis.

Weiss, S., W. Muller, et al. (2005). "Scenejo – An
Interactive Storytelling Platform." Proceedings of the
Third International Conference, ICVS 2005.

GRAPP 2011 - International Conference on Computer Graphics Theory and Applications

346

