correspondences between the characteristic point
sets. The control point coordinates are used as the
features for constructing proximity matrix. The
algorithm is combined with iterative procedure for
excluding false correspondences. The general
projective transformation model is used for image
registration. The registration precision is in
accordance with the existing method. The future
research will be aimed on improving the control
point set matching technique and application of
alternative transformation models.
ACKNOWLEDGEMENTS
This work was supported by the RFBR grant No 09-
07-00368.
REFERENCES
Cappellini, V., et. al., 2005. An automatic registration
algorithm for cultural heritage images. In ICIP’2005,
2005 International Conference on Image Processing.
IEEE, 2, 566–569.
Carcassoni, M., Hancock, E. R., 2003. Correspondence
Matching with Modal Clusters. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 25 (12),
1609-1615.
Chen Y. and Medioni, G., 1992. Object Modelling by
Registration of Multiple Range Images. International
Journal of Computer Vision and Image
Understanding, 10(3), 145-155.
Delponte, E., Isgrò, F., Odone, F., Verri, A., 2006. SVD-
matching using SIFT features. Graphical Models,
68(5), 415-431.
Harris, C., Stephens, M., 1998. A combined corner and
edge detector. In Alvey Vision Conf. 147-151.
Hartley, R., Zisserman, A., 2004. Multiple View Geometry
in Computer Vision. Cambridge University Press.
Heitz, F., Maitre, H. de Couessin, C., 1990. Event
Detection in Multisource Imaging: Application to Fine
Arts Painting Analysis. IEEE transactions on
acoustics, speech, and signal processin, 38(1), 695-
704.
Kammerer, P., Hanbury, A., Zolda, E., 2004. A
Visualization Tool for Comparing Paintings and Their
Underdrawings. In EVA’2004, Conference on
Electronic Imaging & the Visual Arts, 148–153.
Kirsh, A., and Levenson, R. S., 2000. Seeing through
paintings: Physical examination in art historical
studies. Yale U. Press, New Haven, CT.
Kuijper, F., 2002. The Deep Structure of Gaussian Scale
Space Images. Ph.D. Thesis, Utrecht University. ISBN
90-393-3061-1.
Lowe, D. G., 1999. Object recognition from local scale-
invariant features. In ICCV’99, 7th International
Conference on Computer Vision. IEEE, 1150–1157.
Madsen, K., Nielsen, H. B., O. Tingleff, 2004. Methods
for Non-Linear Least Squares Problems. Technical
Report. University of Denmark.
Maintz, J. B. A., Viegever, M. A., 1998. An Overview of
Medical Image Registration Methods. URN:
NBN:NL:UI:10-1874-18921, Utrecht University.
Maitre, H., Schmitt F., Lahanier, C., 2001. 15 years of
image processing and the fine arts. In: ICIP'2001,
2001 International Conference on Image Processing.
IEEE, 1, 557-561.
Martinez, K., Cupitt, J., Saunders, D., Pillay, R., 2002.
Ten Years of Art Imaging Research. In Proceedings of
the IEEE, 90(1), 28-41.
Murashov, D., Kamyshanov, E., 2010. A Comparative
Study of Point Set Registration Algorithms. In. PRIA-
10-2010, 10th Int. Conference on Pattern Recognition
and Image Analysis: New Information Technologies,
2, 323-326.
Myronenko, A., 2010. Song, X. Point Set Registration:
Coherent Point Drift. IEEE Transactions on Pattern
Analysis and Machine Intelligence. Retrieved from
IEEE Computer Society Digital Library: http://doi.ieee
computersociety.org/10.1109/TPAMI.2010.46
Niblack, W., 1986. An Introduction to Digital Image
Processing. Prentice Hall, Englewood Cliffs, NJ.
Pilu M., 1997. A direct method for stereo correspondence
based on singular value decomposition. CVPR’97,
1997 Conference on Computer Vision and Pattern
Recognition. IEEE, 261-266.
Rusinkiewicz, S. Levoy, M., 2001. Efficient Variants of
the ICP Algorithm, In 3DIM'01, 3rd International
Conference on 3-D Digital Imaging and Modeling,
145-152.
Schmid, C., Mohr, R., 1997. Local Greyvalue Invariants
for Image Retrieval. PAMI, 19(5), 872-877.
Scott, G. and Longuet-Higgins, H. C., 1991. An Algorithm
for Associating the Features of Two Images.
Proceedings of the Royal Society London, B244, 21-
26.
Shapiro, L. S., Brady, J. M., 1992. Feature-based
correspondence: an eigenvector approach. Image and
Vision Computing, 10, (5), 283 – 288.
Sharp, G., Lee, S., and Wehe, D., 2002. ICP registration
using invariant features. IEEE Transactions on Pattern
Anal., 24(1), 90–102.
Stork, D. G., 2009. Computer Vision and Computer
Graphics Analysis of Paintings and Drawings: An
Introduction to the Literature. LNCS, Springer-Verlag,
5702, 9–24.
Zhao, F., 2004. Image matching based on singular value
decomposition. In PCM’2004, 5th Pacific Rim
Conference on Multimedia, LNCS, Springer-Verlag
3333, 19–126.
Zitova, B., Flusser, J., 2003. Image registration methods: a
survey. Image and Vision Computing, 21(11), 977–
1000.
A PROCEDURE FOR AUTOMATED REGISTRATION OF FINE ART IMAGES IN VISIBLE AND X-RAY
SPECTRAL BANDS
167