normals and patients with Friedreich’s ataxia based on
the short-time fractal dimension. Computers in Biology
and Medicine, 28(1), 75-89.
Available from http://www.mathworks.com.[Accessed on
20th Jan, 2011].
Chen, G. M., Zhang, M. Z., & Qi, Y. H., 2001. Application
of MATLAB language processing digital signals and
digital image. Beijing: Science Press, 125-127.
Chen, L. Z., & Guo, H, W., 2005. Discrete wavelet
transform theory and engineering practice. Beijing:
Tsinghua University Press, 9-15.
Cristianini, N., Shawe-Taylor, J., 2000. An Introduction to
Support Vector Machines and Other Kernel-based
Learning Methods. Cambridge:Cambridge University
Press.
FeiSi Technology R & D centre 2005. Wavelet analysis
theory and the implementation with MATLAB7. Beijing:
Electronic Industry Press, 328-330.
Gao, Q., 2007. The application of artificial nerve network
in the stock market forecast model. Microeclctronics&
Computer, 24(11), 147-151.
Goudarzi, N., & Goodarzi, M., 2008. Prediction of the
logarithmic of partition Nasser, etc. coefficients(log P)
of some organic compounds by least square-support
vector machine(LS-SVM). Molecular Physics,
106(21-23), 2525-2535.
Huang, W., Nakamori, Y., & Wang, S. Y., 2005.
Forecasting stock market movement direction with
support vector machine. Computers & Operations
Research, 32(10), 2513-2522.
Kim, K. J., 2003. Financial time series forecasting using
support vector machines. Neurocomputing, 55(1-2),
307-319.
Liang, X., Zhang, H. S., Xiao, J. G., & Chen, Y., 2009a.
Improving option price forecasts with neural networks
and support vector regressions. Neurocomputing,
72(13-15), 3055-3065.
Liang, X., & Wang, C., 2009b. Separating hypersurfaces of
SVMs in input spaces. Pattern Recognition Letters,
30(5), 469-476.
Mallat, S. G., 1999. A Wavelet Tour of Signal Processing.
San Diego: Academic Press.
Pai, P.-F., & Lin, C.-S. (2005). A hybrid ARIMA and
support vector machines model instock price
forecasting. Omega, 33, 497–505.
Strang, G., & Nguyen, T., 1997. Wavelets and Filter Banks.
Wellesley: Wellesley-Gambridge Academic Press.
Suykens, J. A. K., & Vandewalle, J., 1999. Least squares
support vector machine classifiers. Neural processing
letters, 9(3), 293-300.
Suykens, J. A. K., Gestel, T. V., Brabanter, J. D., Moor, B.
D., &Vandewalle, J., 2002. Least Squares Support
Vetor Machine Classifiers. Singapore: World Scientific
Publishing Co. Pte.Ltd.
Tay, F.E.H., &Cao, L.J., 2001. Application of support
vector machines in financial time series forecasting.
Omega, 29, 309-317
Vapnik, V. N., 1998. Statistical Learning Theory, Wiley,
New York.
Yin, G. W., & Zheng, P. E., 2004. Forecasting stock market
using wavelet theory. Systems engineering-theory
methodology applications, 13(6), 543-547.
Zheng, S., Liu, L., & Tian, J. W., 2004. A new efficient
SVM-based edge detection method. Pattern
Recognition Letters, 25(10), 1143-1154.
STOCK MARKET FORECASTING BASED ON WAVELET AND LEAST SQUARES SUPPORT VECTOR MACHINE
53