REFERENCES
Alur, R. and Courcoubetis, C. and Halbwachs, N. and Hen-
zinger,T. A. and Ho,P.-H. and Nicollin, X. and Oliv-
ero, A. and Sifakis, J. and Yovine, S. 1995. The algo-
rithmic analysis of hybrid systems. Theoretical Com-
puter Science, 138: 3–34.
Damm, W. and Pinto, G. and Ratschan, S. 2007. Guaran-
teed termination in the verification of LTL properties
of non-linear robust discrete time hybrid systems. In-
ternational Journal of Foundations of Computer Sci-
ence (IJFCS), 18(1): 63–86.
Fehnker, A. and Ivanˇci´c, F. 2004. Benchmarks for hybrid
systems verification. In R. Alur and G. J. Pappas, edi-
tors, HSCC’04, LNCS, Vol. 2993, Springer.
Fr¨anzle, M. 2001. What will be eventually true of
polynomial hybrid automata. In N. Kobayashi and
B. C. Pierce, editors, Theoretical Aspects of Computer
Software (TACS 2001), LNCS, Vol. 2215, Springer-
Verlag.
Frehse, G. 2008. Phaver: algorithmic verification of hy-
brid systems past hytech. International Journal on
Software Tools for Technology Transfer (STTT), 10(3):
263–279.
Girard, A. and Pappas, G. 2006. Verification using simula-
tion. In J. Hespanha and A. Tiwari, editors, HSCC’06,
LNCS, Vol. 3927, pp. 272–286.
Henzinger, T. A. and Kopke, P. W. and Puri, A. and Varaiya,
P. 1998. What’s decidable about hybrid automata.
Journal of Computer and System Sciences, 57: 94–
124.
Henzinger, T. A. and Raskin, J.-F. 2000. Robust undecid-
ability of timed and hybrid systems. In N. Lynch and
B. Krogh, editors, Proc. HSCC’00, LNCS, Vol. 1790,
Springer.
Julius, A. A. and Fainekos, G. E. and Anand, M. and Lee,
I. and Pappas, G. J. 2007. Robust test generation and
coverage for hybrid systems. In A. Bemporad, A. Bic-
chi, and G. Buttazzo, editors, Hybrid Systems: Com-
putation and Control, LNCS, Vol. 4416, pp. 329–242,
Springer.
Klaedtke, F. and Ratschan, S. and She, Z. 2007. Language-
based abstraction refinement for hybrid system veri-
fication. In Proceedings of the Eighth International
Conference on Verification, Model Checking and Ab-
straction Interpretation, LNCS, Vol. 4349, pp. 151–
166, Springer.
Lafferriere, G. and Pappas, G. J. and Yovine, S. 1999. A
new class of decidable hybrid systems. In HSCC, pp.
137–151.
Neumaier, A. 1993. The wrapping effect, ellipsoid arith-
metic, stability and confidence regions. Computing
Supplementum, 9: 175–190.
Preußig, J. and Kowalewski, S. and Wong-Toi, H. and Hen-
zinger, T. 1998. An algorithm for the approximative
analysis of rectangular automata. In 5th Int. School
and Symp. on Formal Techniques in Fault Tolerant and
Real Time Systems, LNCS, Vol. 1486, Springer.
Ratschan, S. 2006. Efficient solving of quantified inequality
constraints over the real numbers. ACM Transactions
on Computational Logic, 7(4): 723–748.
Ratschan, S. and She, Z. 2007a. HSOLVER.
http://hsolver.sourceforge.net. Software package.
Ratschan, S. and She, Z. 2005. Safety verification of hybrid
systems by constraint propagation based abstraction
refinement. In M. Morari and L. Thiele, editors, Hy-
brid Systems: Computation and Control, LNCS, Vol.
3414, pp. 573–589, Springer.
Ratschan, S. and She, Z., 2006. Constraints for continuous
reachability in the verification of hybrid systems. In
Proc. 8th Int. Conf. on Artif. Intell. and Symb. Comp.,
AISC’2006, LNCS, Vol. 4120, pp. 196–210, Springer.
Ratschan, S. and She, Z., 2007. Safety verification of hybrid
systems by constraint propagation-based abstraction
refinement. ACM Transactions on Embedded Com-
puting Systems, 6(1).
Ratschan, S. and She, Z., 2008. Recursive and back-
ward reasoning in the verification on hybrid systems.
In Proceedings of the Fifth International Conference
on Informatics in Control, Automaton and Robotics,
Vol. 4, INSTICC Press.
She, Z. and Zheng, Z. 2008. Tightened reachability con-
straints for the verification of linear hybrid systems.
Nonlinear Analysis: Hybrid Systems, 2(4): 1222–
1231.
Van der Schaft, A. J. and Schumacher, J. M. 2000. An In-
troduction to Hybrid Dynamical Systems. Springer.
TERMINATION ANALYSIS OF SAFETY VERIFICATION FOR NON-LINEAR ROBUST HYBRID SYSTEMS
261