ACKNOWLEDGMENTS
The authors thank the INESC Porto for contributing
to this work and to the FCT (Fundac¸˜ao para Ciˆencia e
Tecnologia) from Portugal for supporting the project
PTDC/EEA-CRO/100692/2008 - ”Perception-Driven
Coordinated Multi-Robot Motion Control”.
REFERENCES
Antonelli, G., Arrichiello, F., Chiaverini, S., and Cassino, S.
(2009). Experiments of Formation Control With Mul-
tirobot Systems Using the Null-Space-Based Behav-
ioral Control. IEEE Transactions on Control Systems
Technology.
Balch, T. and Arkin, R. C. (1998). Behavior-based forma-
tion control for multirobot teams. IEEE Transactions
on Robotics and Automation.
Bicho, E., Diegues, S., Carvalheira, M., Moreira, A. P.,
and Monteiro, S. (2006). Airship Formation Con-
trol. In Proceedings of the 3rd Int. Conf. on In-
formatics in Control, Automation and Robotics, in
Workshop Multi-Agent Robotic Systems (MARS 2006),
pages 22–33.
Costa, P. J. (2010). Simtwo. Available from http://paginas.
fe.up.pt/∼paco/wiki/index.php?n= Main.SimTwo.
Ferreira, J. R. and Moreira, A. P. G. M. (2010). Non-linear
Model Predictive Controller for Trajectory Tracking
of an Omni-directional Robot Using a Simplified
Model. In 9th Portuguese Conference on Automatic
Control.
Fontes, D. M., Fontes, F. A., and Caldeira, A. (2009). Model
Predictive Control of Vehicle Formations. Optimiza-
tion and Cooperative Control Strategies, M.J. Hirsch,
C.W. Commander, P. Pardalos, and R. Murphey ed-
itors, Lecture Notes in Control and Information Sci-
ences, Springer Verlag.
Ghommam, J., Mehrjerdi, H., Saad, M., and Mnif, F.
(2010). Formation path following control of unicycle-
type mobile robots. Robotics and Autonomous Sys-
tems.
Gouveia, M. C. M. (2008). Estudo e implementac¸ ˜ao
de um algoritmo de localizac¸˜ao baseado em corre-
spondˆencia de mapas. Master Thesis in Electronic
and Computers Engineering, Faculty of Engineering
from University of Porto.
Kanjanawanishkul, K. and Zell, A. (2008). Distributed
model predictive control for coordinated path follow-
ing control of omnidirectional mobile robots. In IEEE
International Conference on Systems, Man and Cy-
bernetics, 2008. SMC 2008, pages 3120–3125.
Kanjanawanushkul, K. and Zell, A. (2008). A model-
predictive approach to formation control of omnidi-
rectional mobile robots. In Intelligent Robots and Sys-
tems, 2008. IROS 2008. IEEE/RSJ International Con-
ference on, pages 2771–2776.
Kanjanawanushkul, K. and Zell, A. (2009). Path following
for and omnidirectional mobile robot based on model
predictive control. In 2009 IEEE International Con-
ference on Robotics and Automation.
Liang, X. and Xiao, Y. (2010). Studying bio-inspired coali-
tion formation of robots for detecting intrusions using
game theory. IEEE transactions on systems, man, and
cybernetics: Part B.
Lim, H., Kang, Y., Kim, J., and Kim, C. (2009). Forma-
tion control of leader following unmanned ground ve-
hicles using nonlinear model predictive control. In
Advanced Intelligent Mechatronics. IEEE/ASME In-
ternational Conference on AIM 2009.
Monteiro, S. and Bicho, E. (2008). Robot formations:
robots allocation and leader-follower pairs. In Pro-
ceedings of the 2008 IEEE International Conference
on Robotics & Automation (ICRA2008), pages 3769–
3775.
Monteiro, S. and Bicho, E. (2010). Attractor dynamics ap-
proach to robot formations: theory and implementa-
tion. Autonomous Robots, pages 331–355.
Ren, W. and Beard, R. W. (2003). A decentralized scheme
for spacecraft formation flying via the virtual structure
approach. In Proceedings of the American Control
Conference, pages 1746–1751.
Riedmiller, M. and Braun, H. (1993). A direct adaptive
method for faster backpropagation learning: the rprop
algorithm . In IEEE International Conference onNeu-
ral Networks, pages 586–591.
Tan, K.-H. and Lewis, M. A. (1996). Virtual structures for
high-precision cooperative mobile robotic control. In
Proceedings of the 1996 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems ’96, IROS
96, pages 132–139.
ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics
144