Changguo, Y., Nianzhong, W., Tailei, W., Qin, Z., and
Xiaorong, Z. (2009). The research on the appli-
cation of association rules mining algorithm in net-
work intrusion detection. In Hu, Z. and Liu, Q., edi-
tors, ETCS’09: Proceedings of the 1st International
Workshop on Education Technology and Computer
Science, volume 2, pages 849–852.
Domingues, M. A., Jorge, A. M., and Soares, C. (2006).
Using association rules for monitoring meta-data
quality in web portals. In WAAMD’06: Proceedings
of the II Workshop em Algoritmos e Aplicac¸
˜
oes de Mi-
nerac¸
˜
ao de Dados – SBBD/SBES, pages 105–108.
Fonseca, B. M., Golgher, P. B., Moura, E. S., and Ziviani, N.
(2003). Using association rules to discover search en-
gines related queries. In LA-WEB’03: Proceedings of
the 1st Conference on Latin American Web Congress,
pages 66–71. IEEE Computer Society.
Frank, A. and Asuncion, A. (2010). UCI machine
learning repository. University of California, Irvine,
School of Information and Computer Sciences.
http://archive.ics.uci.edu/ml.
Geng, L. and Hamilton, H. J. (2006). Interestingness mea-
sures for data mining: A survey. In ACM Computing
Surveys, volume 38. ACM Press.
Hastie, T., Tibshirani, R., and Friedman, J. (2009).
The Elements of Statistical Learning: Data Mi-
ning, Inference, and Prediction. Springer Series
in Statistics. Springer, second edition. http://www-
stat.stanford.edu/ tibs/ElemStatLearn/.
Jorge, A. (2004). Hierarchical clustering for thematic
browsing and summarization of large sets of associa-
tion rules. In Berry, M. W., Dayal, U., Kamath, C.,
and Skillicorn, D., editors, SIAM’04: Proceedings of
the 4th SIAM International Conference on Data Mi-
ning. 10p.
Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups
in Data: An Introduction to Cluster Analysis. Wiley-
Interscience.
Metwally, A., Agrawal, D., and Abbadi, A. E. (2005). Using
association rules for fraud detection in web adverti-
sing networks. In VLDB’05: Proceedings of the 31st
International Conference on Very Large Data Bases,
pages 169–180.
Natarajan, R. and Shekar, B. (2005). Interestingness of
association rules in data mining: Issues relevant to e-
commerce. S
¯
ADHAN
¯
A – Academy Proceedings in En-
gineering Sciences (The Indian Academy of Sciences),
30(Parts 2&3):291–310.
Ohsaki, M., Kitaguchi, S., Okamoto, K., Yokoi, H., and Ya-
maguchi, T. (2004). Evaluation of rule interestingness
measures with a clinical dataset on hepatitis. In Bouli-
caut, J.-F., Esposito, F., Giannotti, F., and Pedreschi,
D., editors, PKDD’04: Proceedings of the 8th Euro-
pean Conference on Principles and Practice of Know-
ledge Discovery in Databases, volume 3202, pages
362–373. Springer-Verlag New York, Inc.
Rajasekar, U. and Weng, Q. (2009). Application of asso-
ciation rule mining for exploring the relationship be-
tween urban land surface temperature and biophysi-
cal/social parameters. Photogrammetric Engineering
& Remote Sensing, 75(3):385–396.
Reynolds, A. P., Richards, G., de la Iglesia, B., and
Rayward-Smith, V. J. (2006). Clustering rules: A
comparison of partitioning and hierarchical clustering
algorithms. Journal of Mathematical Modelling and
Algorithms, 5(4):475–504.
Sahar, S. (2002). Exploring interestingness through clus-
tering: A framework. In ICDM’02: Proceedings of
the IEEE International Conference on Data Mining,
pages 677–680.
Semenova, T., Hegland, M., Graco, W., and Williams,
G. (2001). Effectiveness of mining association ru-
les for identifying trends in large health databases.
In Kurfess, F. J. and Hilario, M., editors, ICDM’01:
Workshop on Integrating Data Mining and Knowledge
Management, The IEEE International Conference on
Data Mining. 12p.
Tan, P.-N., Kumar, V., and Srivastava, J. (2004). Selecting
the right objective measure for association analysis.
Information Systems, 29(4):293–313.
Toivonen, H., Klemettinen, M., Ronkainen, P., H
¨
at
¨
onen,
K., and Mannila, H. (1995). Pruning and grouping
discovered association rules. Workshop Notes of the
ECML’95 Workshop on Statistics, Machine Learning,
and Knowledge Discovery in Databases, 47–52, ML-
net.
Zhang, J. and Gao, W. (2008). Application of association
rules mining in the system of university teaching ap-
praisal. In ETTANDGRS’08: Proceedings of the In-
ternational Workshop on Education Technology and
Training & International Workshop on Geoscience
and Remote Sensing, volume 2, pages 26–28. IEEE
Computer Society.
Zhao, Y., Zhang, C., and Cao, L. (2009). Post-Mining of
Association Rules: Techniques for Effective Know-
ledge Extraction. Information Science Reference.
372p.
POST-PROCESSING ASSOCIATION RULES WITH CLUSTERING AND OBJECTIVE MEASURES
63