to those more representative characteristics. Third,
some alternative combination schemes can be consid-
ered in the global identification process.
ACKNOWLEDGEMENTS
This work has been partially supported by Spanish
MICINN under project TEC2008-06663-C03-02.
REFERENCES
Callado, A., Kamienski, C., Szabo, G., Gero, B.P., Kelner,
J., 2009. ”A Survey on Internet Traffic Identification”.
In IEEE Communications Surveys & Tutorials, vol.
11, n. 3, pp. 37-52.
Callado, A., Kelner, J., Sadok, D., Kamienski, C.A., Fer-
nandes, S., 2010. ”Better network traffic identification
through the independent combination of techniques”.
In Journal of Network and Computer Applications,
vol. 33, pp. 433-446.
Chen, H., Zhou, X., You, F., Wang, C., 2010. ”Study of
Double-Characteristics-Based SVM Method for P2P
Traffic Identification”. In Int. Conference on Net-
works Security Wireless Communications and Trusted
Computing, pp. 202-205.
Duda, R.O., Hart, P.E., Stork, D.G., 2001. ”Pattern Classfi-
cation”. John Wiley & Sons.
Erman, J., Mahanti, A., Arlitt, M., Cohen, I., Williamson,
C., 2007. ”Offline/RealtimeTtraffic Classification Us-
ing Semi-Supervised Learning”. In Performance Eval-
uation, vol. 64, pp. 1194-1213.
Fontenelle, M., Bessa, J., Siqueira, G., Holanda, R., Sousa,
J., 2007. ”Using Statistical Discriminators and Clus-
ter Analysis to P2P and Attack Traffic Monitoring”,
In Latin American Network Operations and Manage-
ment Symposium, pp. 67-76.
Gomez, J.M., Puertas, E., Maa, M.J., 2002. Evaluating
cost-sensitive unsolicited bulk email categorization; in
Proc. of the ACM Symposium and Applied Comput-
ing, ACM Press, pp. 615-620.
JinSong, W., Yan, Z., Qing, W., Gong, W., 2007. ”Con-
nection Pattern-based P2P Application Identification
Characteristic”. In Proc. of Int. Conference on Net-
work and Parallel Computing Workshops, pp. 437-
441.
Karagiannis, T., Papagiannaki, K., Foloutsos, M., 2005.
”BLINC: Multilevel Traffic Classification in the
Dark”. In Proc. of the Conference on Applications,
Technologies, Architectures, and Protocols for Com-
puter Communications, pp. 229-240.
Keralapura, R. Nucci, A., Chuah, C., 2010. ”A Novel Self-
Learning Architecture for P2P Traffic Classification in
High Speed Networks”. In Computer Networks, vol.
54, pp. 1055-1068.
Kohavi, R.: A Study of Cross-Validation and Bootstrap for
Accuracy Estimation and Model Selection; in Proc.
of the 14th International Joint Conference on Artifcial
Intelligence, Montreal, Canada, (1995)
Li, X., Liu, Y., 2010. ”A P2P Network Traffic Identification
Model Based on Heuristic Rules”. In Int. Conference
on Computer Application and System Modeling, vol.
5, pp. 177-179.
Madhukar, A., Williamson, C., 2006. ”A Longitudinal
Study of P2P Traffic Classification”. In Proc. of Int.
Symposium on Modeling, Analysis and Simulation,
pp. 179-188.
Mochalski, K., Schulze, H., 2009. ”Deep Packet
Inspection. Technology, applications &
net neutrality”. White Paper. Available at
http://www.ipoque.com/resources/white-papers.
OpenDPI, 2011. http://www.opendpi.org
Segura, J.C, Rubio, A.J., Peinado, A.M., Garc´ıa, P., Rom´an,
R., 1994. ”Multiple VQ Hidden Markov Modelling
for Speech Recognition”. In Speech Communication,
vol. 14, no. 2, pp. 163-170.
Sen, S., Spatscheck, O., Wang, D., 2004. ”Accurate, Scal-
able In-Network Identification of P2P Traffic Using
Application Signatures”. In Proc. of the Int. Confer-
ence on World Wide Web, pp. 512-521.
Sen, S., Wang, J., 2004. ”Analyzing Peer-to-Peer Traffic
Across Large Networks”. In IEEE/ACM Transactions
on Networking, vol. 12, n. 2, pp. 219-232
Soysal, M., Schmidt, E.G., 2010. ”Machine Learning Al-
gorithms for Accurate Flow-Based Network Traffic
Classification: Evaluation and Comparison”. In Per-
formance Evaluation, vol. 67, n. 6, pp. 451-467.
Xuan-min, L., Jiang, P., Ya-jian, Z., 2010. ”A New P2P
Traffic Identification Model Based on Node Status”.
In Int. Conference on Management and Service Sci-
ence, pp. 1-4.
Yiran, G., Suoping, W., 2010. ”Traffic Identification
Method for Specific P2P Based on Multilayer
Tree Combination Classification by BP-LVQ Neural-
Network”. In Int. Forum on Information Technology
and Applications, pp. 34-38.
Yuan, R., Li, Z., Guan, X., Xu, L., 2010. An SVM-
based machine learning method for accurate internet
traffic classification. Information Systems Frontiers,
Springer-Verlag, V. 12, n. 2, pp. 149-156.
MULTIPLE VECTOR CLASSIFICATION FOR P2P TRAFFIC IDENTIFICATION
13