we want to find a pair of height maps that are the
most similar, we look for the minimal value of MSE.
4.2 PSNR (Peak Signal-to-Noise Ratio)
The PSNR method uses MSE as a semi result. The
PSNR value is computed according to the equation
2, where the MAX value represents the highest point
in the height map.
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
=
MSE
MAX
PSNR
2
10
log.10
(2)
PSNR works in an inverse way, so if we are
looking for the most similar height maps, their
PSNR has to be the highest one.
5 RESULTS
We have used the approaches and methods described
above to explore a real data set to discover the
similarities and differences of samples. For our
testing, we have used an experiment described in
Section 3.1 that is a sequence of 1 to 100 laser beam
pulses engraved into a single point on a steel
surface. This sequence was engraved five times,
scanned and the heat-affected area was detected for
each sample.
In the next step, all samples were mutually
compared (each with each other) and the results of
MSE and PSNR were collected in (Kotásek, 2010).
Then we have selected different combinations of
comparisons and we were searching for variations
within them. Although there were some small
differences, the global trend was the same for all of
them and is discussed as follows. All values are
summarized in Table 1 (MSE) and Table 2 (PSNR).
5.1 Measured Values
Let us have a look on Table 1 first, where MSE
values are summarized. The more similar both tested
samples are, the smaller the MSE is computed. That
is why the smallest values are expected on the
diagonal of the table, where samples with the same
number of laser beam pulses are compared. In each
column of the table, the smallest value is highlighted
in bold. Although in some cases the minimal value
does not lie exactly on the diagonal, it is always very
close, most usually the neighbouring one. These
imperfections are typically caused by the local
defects that can be found in the samples. In Table 2
with PSNR results, the highest values are computed
for the most similar samples and are also highlighted
in bold. Also in this case similar problems with the
position of the maximal values can be found.
Besides exploring the real samples discussed in
Table 1: Results of the MSE computation.
1 2 5 10 20 30 40 50 60 70 80 90 100
1
0
69
2
00 1
55 11
89 12
51 10
90 9
66 27
27 29
13 41
58 44
87 23
80 44
38
2 2,00
1,35
3,26 10,81 11,55 10,37 8,98 24,55 26,41 37,52 40,83 21,41 40,33
5 1,55 3,26
0,81
10,73 11,59 9,91 9,70 27,24 29,40 42,41 45,73 24,91 45,27
10 11,89 10,81 10,73
1,16 2,10 2,50
2,34 7,04 9,41 16,04 18,69 8,04 17,67
20 12,51 11,55 11,59 2,10 2,37 3,01 2,56 7,27 9,53 16,43 18,82 8,37 18,40
30 10,90 10,37 9,91 2,50 3,01 2,83 2,75 8,65 10,80 18,30 20,68 9,19 20,34
40 9,66 8,98 9,70 2,34 2,34 2,75
1,15
6,99 8,78 16,00 18,22 6,70 19,15
50 27,27 24,55 27,24 7,04 7,27 8,65 6,99
2,40 4,23
6,23 8,04 3,79 7,70
60 29,13 26,41 29,40 9,41 9,53 10,80 8,78 4,23 5,07 7,06 8,69 4,33 8,73
70 41,58 37,52 42,41 16,04 16,43 18,30 16,00 6,23 7,06
5,04 6,85
6,12 6,23
80 44,87 40,83 45,73 18,69 18,82 20,68 18,22 8,04 8,69 6,85 7,19 7,67 7,85
90 23,80 21,41 24,91 8,04 8,37 9,19 6,70 3,79 4,33 6,12 7,67
1,03
7,72
100 44,38 40,33 45,27 17,67 18,40 20,34 19,15 7,70 8,73 6,23 7,85 7,72
3,45
Table 2: Results of the PSNR computation.
1 2 5 10 20 30 40 50 60 70 80 90 100
1
39
58
35
25 36
62 25
85 23
75 26
39 25
55 22
05 21
40 20
87 19
33 20
88 18
66
2 35,25
37,91
31,37 26,60 24,2 26,55 26,05 23,01 22,20 21,83 20,18 21,83 19,53
5 36,62 31,37
41,25
26,66 24,42 27,09 25,27 21,93 21,30 20,60 19,04 20,37 18,43
10 25,85 26,60 26,66
44,97 41,76 41,01
40,03 34,14 31,27 29,78 27,35 30,49 26,92
20 23,75 24,20 24,42 41,76 38,59 39,96 38,64 34,46 31,64 29,90 27,46 30,21 26,92
30 26,39 26,55 27,09 41,01 39,96 40,07 39,75 32,53 30,45 28,74 26,71 29,76 25,95
40 25,55 26,05 25,27 40,03 38,64 39,75
43,19
34,37 31,97 30,04 28,22 32,10s 26,18
50 22,05 23,01 21,93 34,14 34,46 32,53 34,37
42,51 40,61
39,07 35,60 39,62 34,78
60 21,40 22,20 21,30 31,27 31,64 30,45 31,97 40,61 39,18 39,55 36,54 38,88 34,51
70 20,87 21,83 20,60 29,78 29,90 28,74 30,04 39,07 39,55
40,86 39,21
40,20 38,25
80 19,33 20,18 19,04 27,35 27,46 26,71 28,22 35,60 36,54 39,21 37,09 36,86 35,93
90 20,88 21,83 20,37 30,49 30,21 29,76 32,10 39,62 38,88 40,20 36,86
47,32
34,44
100 18,66 19,53 18,43 26,92 26,92 25,95 26,18 34,78 34,51 38,25 35,93 34,44
40,71
COMPARISON OF SURFACE DATA - Exploring Real Samples Similarity for the Modelling of Engraving
275