
MAS-ML TOOL 
A Modeling Environment for Multi-agent Systems  

Enyo José Tavares Gonçalves 
Universidade Federal do Ceará, Quixadá, CE, Brazil  

Kleinner Farias 
Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil  

Mariela I. Cortés 
Universidade Estadual do Ceará, Fortaleza, CE, Brazil  

Allan Ribeiro Feijó 
Universidade Estadual do Ceará, Fortaleza, CE, Brazil  

Francisco Robson Oliveira 

Universidade Estadual do Ceará, Fortaleza, CE, Brazil  

Viviane Torres da Silva 
Universidade Federal Fluminense, Niterói, RJ, Brazil 

Keywords: Multi Agents Systems modelling, MAS-ML 2.0, Graphical Modelling Framework. 

Abstract: Multi-Agent Systems (MAS) emerged as a promising approach for developing complex and distributed systems. 
However, tools that support development of MASs are essential for this approach is effectively exploited in 
industrial context. Therefore, there is a need for tools for the modeling of MAS, because create and manipulate 
models without support of an appropriate environment are tedious and error-prone tasks that demands time. This 
paper aims to satisfy this need by built a modeling environment domain specific to MAS, implemented as a plug-
in for Eclipse platform. The environment is based on MAS-ML, a modeling language for MAS. This work 
focuses the implementation of tool to MAS-ML static diagrams, according version 2.0 of the language. 

1 INTRODUCTION 

The software industry and academia have researched 
and supplied technology in order to attend the demand 
of building software systems increasingly complex. In 
this scenario, Multi-Agent Systems (MAS) emerged as 
promising approach in attempt to better manage this 
complexity. According Jennings and Wooldridge 
(Jennings and Wooldridge 2000), MAS can be 
understood as societies of agents where heterogeneous 
and autonomous entities that can work together for 

similar or totally different purposes. MAS have become 
a powerful paradigm for software engineering (Mubarak 
2008) and have been used successfully for the 
development of different systems types (Lind 2001) 
(Wooldridge and Ciancarini 2001). In this scenario, 
MAS modeling languages and tools have a central role 
in the development process.  

The possibility of a single MAS may encompass 
multiple agent types with different internal architectures 
(Weiss, 1999) justify the existence of a language to 
support the modelling of different internal agent 
architectures. In this context, the MAS-ML (Multi-Agent 

192 José Tavares Gonçalves E., Farias K., I. Cortés M., Ribeiro Feijó A., Robson Oliveira F. and Torres da Silva V..
MAS-ML TOOL - A Modeling Environment for Multi-agent Systems.
DOI: 10.5220/0003501701920197
In Proceedings of the 13th International Conference on Enterprise Information Systems (ICEIS-2011), pages 192-197
ISBN: 978-989-8425-54-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)



 

System Modeling Language) (Silva, Choren and Lucena 
2007) was upgraded to comply with this requirement, 
resulting in the MAS-ML 2.0 (Gonçalves et al. 2010). 

The utilization of CASE tools to support the 
software engineering processes is recommended in 
order to automate the involved activities. In particular, 
modelling tool increases the productivity and can be 
useful to ensure the well-construction of the models. 
Modelling tools are designed to endure the features and 
mechanics related to a specific modelling language.  

MAS-ML defines three structural diagrams: class 
diagram, role diagram and organization diagram; 
and two dynamic diagrams: sequence and activities 
(Silva, Choren and Lucena 2007). This work aims 
the implementation of a modeling environment to 
support the MAS-ML static diagrams on the basis of 
the MAS-ML 2.0 metamodel.  

This article is organized as follows. Section 2 
presents a theory related to MAS-ML language. In 
Section 3 the environment is presented, describing 
some of its benefits, limitations, mentioning some 
issues on implementation. In Section 4 a case study 
is presented. In Section 5, the related works are 
confronted with these paper contributions. Finally, 
Section 6 presents the conclusions and future work. 

2 MAS-ML 2.0 

MAS-ML 2.0 (Gonçalves et al. 2010) is an 
extension of MAS-ML (Silva, Choren and Lucena 
2007) modeling language in order to support the 
modeling of: (i) simple reflex agents, (ii) Model 
based reflex agents and (iii) goal-based agents with 
the planning and (iv) utility-based agents.  

In practical terms, the aforementioned extension 
involved the creation of two meta-classes: 
AgentPerceptionFunction, which represents the agent 
perceptions and AgentPlanningStrategy, which 
represents the planning agent. Both classes are 
specializations of the BehavioralFeature meta-class 
from UML. Additionally, four stereotypes were created: 
formulate-goal-function that represents the formulation 
of agent goal; formulate-problem-function that represents 
the formulation of the problem; next-function, that 
represents the updating of the agent beliefs; and utility-
function that represents the utility degree based on the 
current action (Gonçalves et al. 2010). 

From the new elements in metamodel, the agent’s 
representation in MAS-ML diagrams has increased 
four graphical variants, where each one represents each 
of the internal architectures mentioned above. In 
consistence with the new agent representations, the agent 
role representation was associated to three 

representations: (i) the original MAS-ML representation, 
(ii) a representation without goals, related to model-
based reflex agents, and (iii) a representation without 
goals and beliefs, related to simple reflex agents. The 
MAS-ML diagrams was modified related the new 
features for the modeling the internal agent architectures. 

3 MAS-ML TOOL DEVELOPMENT 

This section presents the functions, technologies and 
details related to the development of the specific 
domain modeling environment, MAS-ML tool. 

Model driven approach was used, where the 
central model and larger abstraction is the self MAS-
ML metamodel. The metamodel represents the 
derivation process start point that occurs along a set 
of transformations. Five steps realized during the 
development are described follow: 

Domain Model – first, the MAS-ML metamodel 
was specified using the EMOF (Essential Meta-
Object Facility), a metamodel definition language. 
The stereotypes were added to ActionClass by 
ActionSemantics resource, this semantic present the 
options: 0- without stereotype, 1- next-function, 2 – 
utility-function, 3- formulate problem-function and 
4- formulate-goal-function. 

Graphical Definition Model – In this step are 
defined the entities and its properties, and relationships. 
The metamodel entities and relationships were used.  

Tooling Definition Model – In this step are 
specified which elements will be exist in tool palette. 
This step receives the domain model and definition 
model cited previously. 

Mapping Model – In this step a mapping between 
the domain model, graphical model and tooling model 
is building:. The mapping generated was used as input 
of the transformation process, which objectify create a 
model platform specific. A set of six validating rules 
defined using OCL (Object Constraint Language) are 
used to check if model was right formed (Table 1).  

Table 1: Validation rules description. 

Rule Purpose  
Rule 1 If agent has plan then it have goal, belief and action. 
Rule 2 If agent has plan then it do not have perception. 
Rule 3 If agent has a goal, it has a plan or planning   

Rule 4 If agent has planning, it has belief, goal, perception 
and action. 

Rule 5 If agent has plan, it has not planning 

Rule 6 If agent has planning, it has not plan 

Tooling Generate – The next step, according the 
generative approach (Czarnecki and Eisenecker, 2000), 

MAS-ML TOOL - A Modeling Environment for Multi-agent Systems

193



 

is the code generation according to the model created 
on last step. The GMF (Graphical Eclipse Framework) 
(GMF, 2011) is used, which provide a generative 
component and a runtime infrastructure to develop 
graphical editors. Follow each diagram development 
will be described. 

3.1 Class Diagram Development 

The MAS-ML tool Class Diagram resultant 
available the following elements: 1) Nodes: Class, 
AgentClass, OrganizationClass, EnvironmentClass, 
ActionClass, PlanClass, Property, Operation, goal, 
belief, Perception and Planning; 2) Relationships: 
Association, Inhabit, Dependency, Generalization, 
Aggregation and Composite 3) Notes.  

Moreover, the tool can validate the diagrams 
according the generation rules. These rules validate 
the internal architectures representation. 

3.2 Organization Diagram 
Development 

Results of class diagram development were used to 
create the organization diagram. Additionally, agent 
rules and object rules were represented according MAS-
ML 2.0 and the relationships ownership and play, part of 
organization diagram, were added. The inhabit 
relationship have the semantics changed to allow agents, 
agent rules and organization inhabit the environment. 
The association, dependency, generalization, aggregation 
and composition were removed. These new elements 
were in domain model and graphical model, but they 
were not used in class diagram (Section 3.1).  

3.3 Role Diagram Development 

Results of class diagram and organization diagram 
development were used to create the role diagram, 
since some entities are same in both diagrams. Thus, 
the MAS-ML 2.0 metamodel was used too.  

Some elements were preserved: Class, Agent Role 
and Object Role. Similarly the Association, Control, 
Dependency, Generalization and Aggregation 
relationships. The graphical representation of elements, 
relationships and diagrams of MAS-ML tool are 
presented in next section through a case study. 

4 CASE STUDY 

This section presents a MAS to Moodle using MAS-
ML tool. Initially the Moodle will be described and 
after the modelling will be present. 

4.1 Moodle 

The use of computational tools has a positive impact 
on educational activities. Teachers, students and the 
system interact through technological resources, 
sharing the same workspace and solving problems in 
a joint manner, supported by technologies of 
distance communication. 

Typically, collaborative learning environments 
emphasize the Computer-Mediated Communication 
(CMC), with tools that enable synchronous (chat 
rooms, video conferencing) and asynchronous (e-
mail, whiteboard) communications.  

In this context highlight the Virtual Learning 
Environment MOODLE (MOODLE, 2011). It is 
based on social constructionism and assumes that 
people learn best when engaged collaboratively in a 
social process of knowledge construction.  

4.2 Modelling a MAS to Moodle with 
MAS-ML tool 

Six agents were proposed to Moodle: 
LearningPartnerAgent, SearcherInformationAgent, 
PedagogicAgent, UsageHelperAgent, TeamMakerAgent 
and CoordinatorAgent. Follow, these agents are 
described and each MAS-ML tool model is presented. 

LearningPartnerAgent (Figure 1): Modeled as a 
model based reflex agent. This agent selects messages 
of support and reinforcement for students to display 
based on the difficulties and successes he has in the 
discussions and / or the proposed tasks and / or content. 

 
Figure 1: Learning Partner Agent created in MAS-ML 
tool. 

PedagogicAgent (Figure 2): It is a goal-based 
agent with planning. Its function is to help the 
student through messages related to the theme on 
which he is involved in different courses and 
disciplines that participate. It also suggested courses 
and subjects that are related to the student interests. 

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

194



 

UsageHelperAgent (Figure 3): Modeled as a 
simple reflex agent. It is responsible for providing 
tips on how to make better use of specific tools.  

TeamMakerAgent (Figure 4): Modeled as a 
utility based agent, its function is to form or join 
groups according to the proposed subject or learning 
profile suggested by the trainer. 

 
Figure 2: Pedagogic Agent created in MAS-ML tool. 

 
Figure 3: Usage Helper Agent created in MAS-ML tool. 

SearcherInformationAgent (Figure 5): Agent-
based goal with plan. This agent is responsible for 
locating people within Moodle environment are 
involved in related disciplines and groups the same 
topic of the student. Additionally, this agent search 
for documents (pages, projects and other digital 
objects) that related with the topic of interest. 

CoordinatorAgent (Figure 6): Modeled as a 
goal-based agent with planning, this agent should be 

responsible for ordering the actions of other agents, 
thus mediating the same conversation. 

 
Figure 4: Team Maker Agent created in MAS-ML tool. 

 
Figure 5: Searcher Information Agent created in MAS-ML tool. 

 
Figure 6: Coordinator Agent created in MAS-ML tool. 

MAS-ML TOOL - A Modeling Environment for Multi-agent Systems

195



 

Six agent roles associated to an agent showed were 
proposed to Moodle: LearningPartner (Figure 7), 
Pedagogic (Figure 8), TeamMaker (Figure 9), 
SearcherInformation (Figure 10), UsageHelper (Figure 
11) and Coordinator (Figure 12). Follow, the agent role 
model in MAS-ML tool is presented. 

 
Figure 7: Learning Partner Role created in MAS-ML tool. 

 
Figure 8: Pedagogic Role created in MAS-ML tool. 

 
Figure 9: Team Maker Role created in MAS-ML tool. 

Finally, Figure 13 depicts the Role Diagram for 
Moodle MAS and Figure 14 depicts the 
Organization Diagram for Moodle MAS. 

 
Figure 10: Searcher Information Role created in MAS-ML tool. 

 
Figure 11: Usage Helper Role created in MAS-ML tool. 

 
Figure 12: Coordinator Role created in MAS-ML tool. 

 
Figure 13: Role Diagram created in MAS-ML tool. 

ICEIS 2011 - 13th International Conference on Enterprise Information Systems

196



 

 
Figure 14: Organization Diagram created in MAS-ML 
tool. 

5 RELATED WORKS 

Whereas a broad scope in relation to support tools for 
the modeling of SMAs (AgentTool 2011) (Padgham, 
Winikoff Thangarajah and 2008). However, a key issue 
is that the tools are projected to support the diagram 
construction in an specific modeling language. Thus, 
the advantages and limitations of these languages are 
propagated to the tools that implement them. 

Considering the already existent modeling tools 
related to MAS-ML, VisualAgent (De Maria et al. 
2005) is a software development environment that 
aims to assist developers in the specification, design 
and implementation of MASs.  

VisualAgent is based on the original MAS-ML 
metamodel. Consequently, the support to the modeling 
for agents with different internal architectures can be 
limited. VisualAgent neither model checking 
mechanism is provided. The absence of this feature in 
VisualAgent can compromise the quality of models 
and generated code. Moreover, the lack of 
documentation and source code access hinders their 
project continuity. 

6 CONCLUSIONS  

This paper presents a tool that represents a concept 
proof of modeling language MAS-ML, focused on 
static diagrams. In their current version, MAS-ML 2.0 
incorporates features to model rational agents in an 
appropriate manner, providing a better level of 
abstraction to represent the internal characteristics of 
SMAs. With the environment is possible, support the 
modeling activity, check the correctness of the models 

construction and hold their persistence. In the context 
of the model oriented development, the diagrams can 
be used in the transformation process to code 
generation in specific agent platforms. 

As future work, some improvements can be made 
on the graphical representation of builders to represent 
with more faithfulness the proposed representation in 
the MAS-ML metamodel. Additionally, support for 
modeling of dynamic diagrams of the MAS-ML 2.0.  

ACKNOWLEDGEMENTS 

The authors are grateful to F. R. Oliveira and F. J. Maia 
for useful comments and suggestions. A. Feijó 
acknowledges CNPq/Brazil for financial support. 

REFERENCES 

agentTool (2011), Available in http://agenttool.cis.ksu.edu/, 
Accessed in 10 January of 2011. 

Czarnecki, K.; Eisenecker, U. (2000). Generative 
Programming - Methods, Tools, and Applications, 
Adison-Wesley, June 2000. 

De Maria, B. A.; Silva, V. T.; Lucena, C. J. P.; Choren, R. 
(2005). VisualAgent: A Software Development 
Environment for Multi-Agent Systems. Proceedings of 
the 19 Brazilian Symposium of Software Engineering, 
Tool Track, Brazil. 

GMF (2011). Available in www.eclipse.org/modeling/gmf/, 
Accessed 10 January of 2011. 

Gonçalves, E. J. T.; Cortés, M. I.; Campos, G. L.; Silva, V. T. 
(2010). Extending MAS-ML to Model Proactive and 
Reactive Software Agents. 12th International Conference 
on Enterprise Information System, Portugal. 

Jennings, N.; Wooldridge, M. (2000), Agent-Oriented 
Software Engineering, In Bradshaw, J. (Ed.) 
Handbook of Agent Technology, AAAI/MIT Press. 

Lind, J. (2001), Issues, In: Ciancarini P. e Wooldride M., 
Agent-Oriented Software Engineering, LNCS 1957, 
Germany, Springer, p.45-58. 

MOODLE. Course Management System. Available in: 
http://moodle.org/. Accessed in January 10, 2011.  

Mubarak, H. (2008), Developing Flexible Software Using 
Agent-Oriented Software Engineering, IEEE Software, 
Sep/Oct, IEEE Computer Society, pp. 12-15. 

Padgham, L.; Thangarajah, J.; Winikoff, M. (2008) 
Prometheus Design Tool, in 23th AAAI Conference on 
Artificial Intelligence, Chicago, EUA, pp.1882-1883. 

Silva, V. T.; Choren, R.; Lucena, C. J. P. de (2007). MAS-
ML: A Multi-Agent System Modeling Language. In: 
Conference on Object-oriented programming, systems, 
languages, and applications, 18th annual ACM 
SIGPLAN; CA, USA, ACM Press, pp. 304-305. 

Wooldridge, M.; Ciancarini, P. (2001), Agent-Oriented Software 
Engineering: the State of the Art, In Agent-Oriented 
Software Engineering, LNCS1957, Springer, p. 1-28. 

MAS-ML TOOL - A Modeling Environment for Multi-agent Systems

197


