(a) (b) (c)
(d) (e) (f)
Figure 4: A fragment of Barbara image, (a) Original im-
age, (b) Noisy image (SSIM (Wang et al., 2004) =0.7770),
(c) Image denoised by WT-Lap method (SSIM=0.8949),
(d) Image denoised by LAWML (Michak et al., 1999)
(SSIM=0.9001), (e) Image denoised by LOT-Lap (M=8)
(SSIM=0.8974), (f) Image denoised by LOT-Lap (M=16)
(SSIM=0.9011).
REFERENCES
Bhuiyan, M. I. H., Ahmad, M. O., and Swamy, M. N. S.
(2008). Wavelet-based image denoising with the nor-
mal inverse gaussian prior and linear mmse estimator.
IET Image Processing, 2(4):203–217.
Chang, S., Yu, B., and Vetterli, M. (2000). Adaptive
wavelet thresholding for image denoising and com-
pression. IEEE Transactions on Image Processing,,
9:15321546.
Duval, L. and Nguyen, T. Q. (2003). Lapped transform do-
main denoising using hidden markov trees. In IEEE
International Conference on Image Processing, vol-
ume 1, pages 125–128.
Duval, L. and Nguyen, T. Q. (2004). Hidden markov tree
image denoising with redundant lapped transforms. In
IEEE International Conference on Acoustics, Speech
and Signal Processing, volume 3, pages 193–196.
Eom, I. K. and Kim, Y. S. (2004). Wavelet-based denoising
with nearly arbitrarily shaped windows. IEEE Signal
Processing Letters, 11(12):937–940.
Fan, G. and Xia, X. G. (2001). Image denoising using lo-
cal contexual hidden markov model in the wavelet do-
main. IEEE Signal Processing Letters, 8(5):125–128.
Kazubek, M. (2003). Wavelet domain image denoising by
thresholding and wiener filtering. IEEE Signal Pro-
cessing Letters, 10(11):324–326.
Malvar, H. S. (1989). The lot : Transform coding without
blocking effects. IEEE Transactions on Accoustics,
Speech and Signal Processing, 37(4):553–559.
Malvar, H. S. (1992). Signal Processing with Lapped Trans-
forms. Norwood, MA : Artech House.
Malvar, H. S. (2000). Fast progressive image coding with-
out wavelets. In Data Compression Conference, pages
243–252.
Michak, M. K., Kozintsev, I., and Ramchandran, K. (1999).
Low complexity image denoising based on statistical
modelling of wavelet coefficient. IEEE Signal Pro-
cessing Letters, 6(12):300–303.
Rabbani, H. (2009). Image denoising in steerable pyramid
domain based on local laplace prior. Pattern Recogni-
tion, 42:2181–2193.
Rabbani, H. and Vafadust, M. (2008). Image / video denos-
ing based on a mixture of laplace distributions with lo-
cal parameters in multidimensional complex wavelet
domain. Signal Processing, 88(11):158–173.
Raghvendra, B. S. and Bhat, P. S. (2006). Image denosing
using mixture distributions with lapped transforms. In
National Conference of Communications, pages 217–
220.
Sendur, L. and Selesnick, I. W. (2002). Bivariate shrinkage
functions for wavelet-based denoising. IEEE Trans-
actions on Signal Processing, 50:27442756.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment : From error vis-
ibility to structural similarity. IEEE Transactions on
Image processing, 13(4):600–612.
Xiong, Z., Guleryuz, O. G., and Orchard, M. T. (1996). A
dct based embedded image coder. IEEE Signal Pro-
cessing Letters, 3(11):289–290.
Yang, S. and Nguyen, T. Q. (2003). Denoising in the
lapped transform domain. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
volume 6, pages 173–176.
SIGMAP 2011 - International Conference on Signal Processing and Multimedia Applications
72