
RESOURCE ORIENTED MODELLING
Describing Restful Web Services using Collaboration Diagrams

Areeb Alowisheq, David E. Millard and Thanassis Tiropanis
School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, U.K.

Keywords: Resource Oriented Architecture, REST, UML collaboration diagrams, Semantic Web Services.

Abstract: The popularity of Resource Oriented and RESTful Web Services is increasing rapidly. In these, resources
are key actors in the interfaces, in contrast to other approaches where services, messages or objects are. This
distinctive feature necessitates a new approach for modelling RESTful interfaces providing a more intuitive
mapping from model to implementation than could be achieved with non-resource methods. With this
objective we propose an approach to describe Resource Oriented and RESTful Web Services based on UML
collaboration diagrams. Then use it to model scenarios from several problem domains, arguing that
Resource Oriented and RESTful Web Services can be used in systems which go beyond ad-hoc integration.
Using the scenarios we demonstrate how the approach is useful for: eliciting domain ontologies; identifying
recurring patterns; and capturing static and dynamic aspects of the interface.

1 INTRODUCTION

The increasing popularity of RESTful Web Services
is based on a number of factors like: being light-
weight, providing easy accessibility, and being
resource-oriented and declarative (Zhao and Doshi,
2009). This creates a demand for a modelling
technique to abstract design from implementation.
There are several approaches for modelling RESTful
and Resource-Oriented (RO) Web Services, based
on process calculus and related methods; however
we adopt a more familiar approach (using UML)
focusing on resources, which contributed to the
success of RO and RESTful Web Services.

The advantages of Resource-Oriented Modelling
lie from it being a more natural way to represent
REST and ROA solutions, allowing designs to be
easily mapped to solutions. It provides a simple
mechanism for eliciting domain ontologies and
captures dynamic and static aspects of the interface,
it enables us to identify patterns across different
domains. In section 2 existing approaches for
RESTful and RO modelling are discussed. Section 3
discusses REST, ROA and our modelling approach.
In section 4, scenarios are modelled from different
domains. Section 5 will discuss its advantages.

2 RELATED WORK

Several approaches are proposed to model RESTful
or ROA Web Services. Overdick (2007) shows how
ROA is modelled using π-calculus, and since there is
a mapping from Business Process Modelling
Notation (BPMN) to π-calculus, then business
processes can be modelled in ROA. Zhou and Doshi
(2009) categorised WS into three types; they
described them with ontology and rules and
provided a framework for composing those services
based on situation calculus. In work by (2010)
resources were modelled in triple spaces, and a
process calculus method was used to describe
resource composition. These approaches overlook
the REST constraint: hypermedia as the engine of
application state, meaning that servers guide clients’
transitions. They require formal descriptions which
is not intuitive to most developers. In our work we
use UML collaboration diagrams.

3 RO MODELLING

3.1 REST and ROA

Despite REST’s popularity, it is misunderstood and
oversimplified. Fielding, an author of the HTTP and

113Alowisheq A., E. Millard D. and Tiropanis T..
RESOURCE ORIENTED MODELLING - Describing Restful Web Services using Collaboration Diagrams.
DOI: 10.5220/0003518401130118
In Proceedings of the International Conference on e-Business (ICE-B-2011), pages 113-118
ISBN: 978-989-8425-70-6
Copyright c 2011 SCITEPRESS (Science and Technology Publications, Lda.)

URI web standards, introduced the REST
architecture style in his PhD dissertation (Fielding,
2000). The aim of his thesis was to realise the
architectural aspects that made the Web successful
as a scalable network-based hypermedia system. The
constraints are: a client-server architecture,
statelessness, cache, uniform interface, layered, and
code on demand. These provide scalability,
portability, simple replication of servers, reliability,
efficiency, visibility, decoupling, and reusability.
Developers welcomed REST because it provided a
uniform interface without imposing additional
layers. Many service providers like Google, Yahoo
and Amazon started offering RESTful Web
Services; however this rapid uptake came with the
cost of not adhering to REST. The so-called
RESTful Web Services violate two of REST’s
constraints: the uniform interface and statelessness.
The need for a guide on how to design RESTful
Web Services was met by Richardson and Ruby
(2007), who focus on Resource-Oriented
Architecture (ROA). The main idea in ROA is for
the server to identify the resources and provide a
uniform interface for them, through which a client
can create, read, update and delete the resources.
These actions are mapped respectively to the HTTP
methods, POST, GET, PUT and DELETE. Fielding
criticised ROA for not focusing on the hypermedia
constraint. This entails using media types to specify
not only the resources, but also the controls that
indicate which actions can be performed. An
example in HTML, the <form>, indicates GET or
POST. The difficulty in discussing RESTful Web
Service solutions lies in the fact that existing Web
Service existing Web Service representations focus
on services or messages. In our work we have
sought to develop a resource-oriented modelling
approach using UML Collaboration Diagrams.

3.2 The UML Collaboration Diagrams
for RO Modelling

The UML collaboration diagram is one of the UML
interaction diagrams (Booch et al., 2005) and it
shows the interaction between objects and their
structural organisation. It can model static and
dynamic aspects of the system. When building ROA
and RESTful Web Service, we are creating an
interface not a complete system; therefore our
modelling approach focuses on the interface. The
interface is formed by the resources that the server
exposes to the client. In our modelling approach
resources take the place of objects in collaboration
diagrams. According to ROA, these resources have

a uniform interface: they can be created, read,
updated or deleted.

Sending a POST request to a factory resource, or
a class in UML terms, creates a resource. Figure 2
describes a Web Service for ordering pizzas. The
client reads the menu, and then submits its order.

Figure 1: RO Diagram.

r, c and i on the messages respectively correspond to
read, create and instantiate. The links labelled
Contains are structural links showing how
resources relate to each other.

4 RO MODELLING OF
PROBLEM DOMAINS’
SCENARIOS

We have chosen five scenarios each from a key
problem domain. These domains are: Web mashups,
Enterprise Services, Business to Business (B2B),
Cloud Computing and Grid Computing. In each
domain we present a scenario, and its RO modelling.
Our intention is to provide evidence our technique
works across a range of important domains, and then
in Section 5 show how it facilitates their analysis.

4.1 Yahoo Pipes (Mashups)

Mashups combine APIs and data sources to form
new applications and new data sources. This
scenario is creating a mashup using Yahoo Pipes, an
interactive web application that enables the creation
and execution of mashups. A user can add widgets,
such as data sources, and filters to merge the data.

A user has built a stock quote mashup using
Yahoo Pipes(Donnelly, 2010), it displays last quotes
and chart for stocks. He uses the widgets to retrieve
original stock data from a .csv file at Yahoo Finance
downloads. Then he uses a widget to filter the stock
file for stock quotes. To loop through the obtained
data he uses a widget to display the results as a
chart.

ICE-B 2011 - International Conference on e-Business

114

The generic scenario of building mashups using
Yahoo Pipes is broken down to the following steps:

(1.) The client creates a mashup
(2.) The client creates widgets
(3.) The widget produces the results
(4.) The client reads the results

Figure 2: Modelling Mashups Creations with Yahoo Pipes.

4.2 City University (Enterprise
Services)

Enterprise Services integrate different systems,
whilst maintaining independent evolution of these
components. The scenario chosen is an integration
project from City University (2008) called Single
Sourcing of Programme Data (SSPD). Information
about the study programmes is used in different
processes, however these operate independently this
leads to inconsistencies in data and effort
duplication.

SSPD is concerned with how programme
information is created, updated and used, so that
different processes could be facilitated and any
inconsistencies resolved. It enables academic and
administrative staff to maintain module and
programme specifications and submit for approval.

This scenario can be decomposed into:
(1.) Academic Staff reads the programme info
(2.) Creates a modification
(3.) Can update it, when it is finished
(4.) It is approved by the Administrative staff
(5.) The programme info is updated
(6.) It can be read by interested processes

Figure 3: Modelling City University’s SSPD.

4.3 Reverse Auctioning (B2B)

Business to Business services offer the ability to
share information and performing transactions on
the Web. The scenario modelled here is a reverse
auctioning scenario from (Decker and Weske, 2007):

“A buyer (e.g., car manufacturer) uses reverse
auctioning for procuring specially designed
components. In order to get help with selecting the
right suppliers and organizing and managing the
auction, the buyer outsources these activities to an
auctioning service. The auctioning service
advertises the auction, before different suppliers can
request the permission to participate in it. The
suppliers determine the shipper that would deliver
the components to the buyer or provide a list of
shippers with different transport costs and quality
levels, where the buyer can choose from. Once the
auction has started, the suppliers can bid for the
lowest price. At the end, the buyer selects the
supplier according to the lowest bid. After the
auction is over, the auctioning service is paid.”

The scenario could be broken down into:
(1.) The buyer creates an auction
(2.) The buyer starts the auction
(3.) The suppliers place their bids
(4.) The buyer selects a bid
(5.) The buyer pays for the service
(6.) The buyer deletes the auction

Figure 4: Modelling Reverse Auctioning.

4.4 TimesMachine (Cloud Computing)

Cloud computing offers software, platforms and
infrastructures as services to clients. These are
dynamically scalable to respond to high peak loads.
The cloud computing scenario we chose is the New
York Times project called TimesMachine (Klems et
al., 2009), which aims to provide access to issues
dating back to 1851, adding up to 11 million articles.

RESOURCE ORIENTED MODELLING - Describing Restful Web Services using Collaboration Diagrams

115

The team wanted to generate the PDF files from
TIFF images. They decided to generate all the PDF
files and serve them on request. The size of TIFF
files was 4 Terabytes. So they used Amazon's Elastic
Compute Cloud (EC2) and Simple Storage Service
(S3). The TIFF files were uploaded to S3, they
started a Hadoop cluster of 100 customized EC2
Machine Images. They transferred the conversion
application. That resulted in the conversion to PDFs
and storing the results to S3 taking 36 hours only.

The decomposition of the scenario:
(1.) Create the data items, upload the images
(2.) Create a Hadoop Cluster
(3.) Create an application and upload it
(4.) The application returns the results
(5.) The client reads the results

Figure 5: NYT Cloud Computing RO Model.

4.5 NEESgrid (Grid Computing)

Grid Computing is concerned with enabling the
utilisation of distributed resources to provide a
seamless platform for computational or data-
intensive applications. This platform is used to
enable remote collaboration and instrument sharing.
NEESgrid is an NSF funded project to build a virtual
laboratory for earthquake engineers. Using grid
technologies enables remote access and control to
observational sensors, experimental data,

computational resources, and earthquake
engineering control systems such as shake tables and
reaction walls (Gullapalli et al., 2004).

Earthquake engineers wanted to study the effect
of an earthquake on different types of substances
and structures, these different structures and their
shake tables are distributed across a number of labs,
the aim was to coordinate these experiments with
computer simulations. So the Multi-site Online
Simulation Test (MOST) was devised to test and
illustrate this capability using the NEESgrid system.
MOST coupled physical experiments testing the
effect of an earthquake on the interior of a multi-
story building at 3 different sites each testing a part
of the structure. MOST linked the physical
experiments at the University of Illinois at Urbana-
Champaign (UIUC) and at the University of
Colorado, Boulder (CU) with a numerical
simulation at the National Centre for
Supercomputing Applications (NCSA). A simulation
coordinator coordinates the overall experiment.

The scenario consists of the following steps:
(1.) Create experiments and the simulation
(2.) Create an experiment coordinator
(3.) The coordinator starts the experiments
(4.) The coordinator retrieves experiment

results
(5.) The coordinator aggregates the results
(6.) The results are read

5 ADVANTAGES OF RO
MODELLING

5.1 Eliciting Domain Ontologies

Semantic Web Service approaches such as
SAWSDL (Farrell and Lausen, 2007), and OWL-S
(Martin et al., 2004) require domain ontologies. The
structural view that RO models offer can be used to
elicit domain ontologies. By mapping the resource
factories to classes, resources to objects and the links
into relationships, the structure of the domain
ontology can be elicited, what remains is to add the
data properties. We can use this simple mapping to
create the basis of an ontology in OWL (Bechhofer
et al., 2004) for the scenario 4.3:
:Auction a owl:Class.
:Bid a owl:Class;
:Payment a owl:Class.
:For a owl:ObjectProperty;
rdfs:domain :Bid; rdfs:range :Auction.
:Has a owl:ObjectProperty;
rdfs:domain :Auction; rdfs:range :Payment.

ICE-B 2011 - International Conference on e-Business

116

Figure 6: NEESgrid Experiment RO Model.

5.2 Modelling Static and Dynamic
Aspects

This is a result of being based on UML collaboration
diagrams. The static aspect of RO models informs
developers on the resource type and the relationships
between them from the client’s point of view; in
other words, the domain model. The dynamic aspect
is shown by the messages showing the control flow:
how the server needs to guide clients to achieve the
functionality described, and what “next state”
options the server should provide.

5.3 Identifying Recurring Patterns

RO models aid in identifying recurring patterns.
Some we know from other software engineering
areas. For example:
Factory: the factory is a well-known pattern that
appears several times in all of the scenarios. In it a
given object creates and initialises new objects.
Returning Results: This is where a resource creates

results for a client to read. This appears in steps 3
and 4 in Figure 2, and steps 4 and 5 in Figure 5.
Controller: this occurs in Figure 6, where a
resource updates several resources.
Identifying patterns can aid in providing RO
solutions when modelling systems, and also in
designing code generation tools for patterns, making
development faster and less error-prone.

6 CONCLUSIONS AND FUTURE
WORK

We introduced an RO modelling approach for
modelling RESTful and RO Web Services. We used
RO models to describe Web Services in five
different problem domains. The approach models
structural and behavioural aspects of the Web
Service. The structural aspect can be used to elicit
domain ontologies. Moreover RO models can be
used to describe recurring patterns. Further work
will be done to identify recurring patterns from the

RESOURCE ORIENTED MODELLING - Describing Restful Web Services using Collaboration Diagrams

117

RESTful and RO perspective; this will help in
providing solutions to common problems and in
informing design decisions for standards and
platforms, which will emerge in this dynamic area.

REFERENCES

Bechhofer, S., Harmelen, F. V., Hendler, J., horrocks, I.,
Mcguinness, D. L., Patel-schneider, P. F. & Stein, L.
A. 2004. OWL Web Ontology Language Reference.
In: DEAN, M. & SCHREIBER, G. (eds.). W3C
Recommendation, World Wide Web Consortium
(W3C).

Booch, G., Rumbaugh, J. & Jacobson, I. 2005. Unified
Modeling Language User Guide, Addison-Wesley
Professional.

City University. 2008. Introducing SOA at City
University, City University, London.

Decker, G. & Weske, M. 2007. Behavioral consistency for
B2B process integration. Advanced Information
Systems Engineering Proceedings, 4495, 81-95.

Donnelly, P. 2010. Yahoo Finance Stock Quote Watch
List Feed [Online]. Yahoo. Available: http://pipes.
yahoo.com/31337/watchlist [Accessed 26/02/2010
2010].

Farrell, J. & Lausen, H. 2007. Semantic Annotations for
WSDL and XML Schema. W3C Recommendation,
World Wide Web Consortium (W3C).

Fielding, R. T. 2000. Architectural Styles and the Design
of Network-based Software Architectures. Doctoral
dissertation, University of California.

Gullapalli, S., Dyke, S., Hubbard, P., Marcusiu, D.,
Pearlman, L. & Severance, C. Year. Showcasing the
features and capabilities of NEESgrid: A grid based
system for the earthquake engineering domain. In: the
13th IEEE International Symposium on High
Performance Distributed Computing, 4-6 June 2004
2004 Honolulu, Hawaii USA. 268-269.

Hernandez, A. G. & Garcia, M. N. M. Year. A Formal
Definition of RESTful Semantic Web Services. In:
First International Workshop on RESTful Design
(WS-REST 2010), 2010 Raleigh, North Carolina. 39-
45.

Klems, M., Nimis, J. & Tai, S. 2009. Do Clouds
Compute? A Framework for Estimating the Value of
Cloud Computing. Designing E-Business Systems, 22,
110-123.

Martin, D., Burstein, M., Hobbs, J., Lassila, O.,
Mcdermott, D., Mcllraith, S., Narayanan, S., Paulocci,
M., Parsia, B., Payne, T. R., Sirin, E., Srinivasan, N. &
Sycara, K. 2004. OWL-S: Semantic Markup for Web
Services. W3C Member Submission, World Wide
Web Consortium (W3C).

Overdick, H. Year. The Resource-Oriented Architecture.
In: the IEEE Congress on Services, 7-11 July 2008
2007 Hawaii, USA. 340-347.

Richardson, L. & Ruby, S. 2007. RESTful Web Services,
O'Reilly Media.

Zhao, H. & Doshi, P. Year. Towards Automated RESTful
Web Service Composition. In: Proceedings of the
2009 IEEE International Conference on Web Services,
2009. 1586928: IEEE Computer Society, 189-196.

ICE-B 2011 - International Conference on e-Business

118

