REFERENCES
Von Neumann, J., 1966. The Theory of Self-reproducing
Automata, A. Burks, ed., Univ. of Illinois Press,
Urbana, IL.
Burks, A., 1970. Essays on Cellular Automata. Univ.
Illinois Press.
Pesavento, U., 1995. An implementation of von
Neumann’s self-reproducing machine. Artificial Life,
Vol. 2, pp. 337-354.
Sivilotti, M., 1991. Wiring Considerations in analog VLSI
Systems with Application to Field-Programmable
Networks, Ph.D. Thesis, California Institute of
Technology, Pasadena CA.
Boahen, K. A., 1998. Communicating Neuronal
Ensembles between Neuromorphic Chips.
Neuromorphic Systems. Kluwer Academic Publishers,
Boston.
Serrano-Gotarredona, R., Oster, M., Lichtsteiner, P.,
Linares-Barranco, A., Paz-Vicente, R., Gómez-
Rodríguez, F., et al., 2009. CAVIAR: A 45k-neuron,
5M-synapse AER Hardware Sensory-Processing-
Learning-Actuating System for High-Speed Visual
Object Recognition and Tracking, IEEE Trans. on
Neural Networks, Vol. 20. Núm. 9. Pag. 1417-1438.
Cohen, A., et al., 2006. Report to the National Science
Foundation: Workshop on Neuromorphic Engineering,
Telluride, Colorado, USA, June-July 2006.
CNEW, 2011. The 2011 Cognitive Neuromorphic
Engineering Workshop.
Serrano-Gotarredona, R., et al., 2006. A Neuromorphic
Cortical-Layer Microchip for Spike-Based Event
Processing Vision Systems. IEEE T Circuits Systems-
I, Vol. 53, No 12, pp. 2548-2566, Dec-2006.
Linares-Barranco, A., Paz, R., Gómez-Rodríguez, F.,
Jiménez, A., Rivas-Perez, M., Jiménez, G., and Civit
A., 2009. FPGA Implementations comparison of
Neuro-Cortical inspired Convolution Processors for
Spiking Systems. Lecture Notes in Computer Science
Vol. 5517, pp.97-105, 2009.
Rivas-Perez, M., Linares-Barranco, A., Cerda, J.,
Ferrando, N., Jimenez, G., Civit, A., 2010. Visual
Spike-based convolution processing with a Cellular
Automata Architecture. The 2010 International Joint
Conference on Neural Networks (IJCNN). DOI:
10.1109/IJCNN.2010.5596924.
Farabet, C., Poulet, C., Han, J. Y., LeCun, Y., 2009. CNP:
An FPGA-based Processor for Convolutional
Networks. International Conference on Field
Programmable Logic and Applications. FPL 2009.
Farrig, N., Mamalet, F., Roux, S., Yang, F., Paindavoine,
M., 2008. Design of a Real-Time Face Detection
Parallel Architecture Using High-Level Synthesis.
Hindawi Publishing Corporation. EURASIP Journal
on Embedded Systems. Vol. 2008, id 938256.
LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P.
Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86, 2278–2324.
Huang, F.-J., LeCun, Y., 2006. Large-scale learning with
svm and convolutional nets for generic object
categorization. In Proc. Computer Vision and Pattern
Recognition Conference (CVPR’06). IEEE.
Ranzato, M., Huang, F., Boureau, Y., & LeCun, Y., 2007.
Unsupervised learning of invariant feature hierarchies
with applications to object recognition. In Proc.
Computer Vision and Pattern Recognition Conference
(CVPR’07). IEEE Press.
Jarrett, K., Kavukcuoglu, K., Ranzato, M., & LeCun, Y.,
2009. What is the best multi-stage architecture for
object recognition? In Proc. International Conference
on Computer Vision (ICCV’09). IEEE.
Osadchy, R., Miller, M., & LeCun, Y., 2004. Synergistic
face detection and pose estimation with energy-based
model. In Advances in Neural Information Processing
Systems (NIPS 2004). MIT Press.
Hadsell, R., Sermanet, P., Scoffier, M., Erkan, A.,
Kavackuoglu, K., Muller, U., & LeCun, 2009. Y.
Learning long-range vision for autonomous off-road
driving. Journal of Field Robotics, 26 , 120–144.
Farabet, C., Poulet, C., Han, J. Y., LeCun, Y., 2009. CNP:
an FPGA-based processor for Convolutional
Networks. International Conference on Field
Programmable Logic and Applications (FPL). pp 32-
37. DOI: 10.1109/FPL.2009.5272559.
Gomez-Rodriguez, F., Paz, R., Linares-Barranco, A.,
Rivas M., 2006. AER tools for Communications and
Debugging. Proceedings of the IEEE ISCAS 2006.
Chan, V., Liu, S. C., van Schaik, A., 2007. AER EAR: A
Matched Silicon Cochlea Pair with Address-Event-
Representation Interface. IEEE Trans. Circuits and
Systems-I. Vol. 54, No 1. pp. 48-59. Jan-2007.
Serrano-Gotarredona, R. et al., 2006. A Neuromorphic
Cortical-Layer Microchip for Spike-Based Event
Processing Vision Systems. IEEE T Circuits Systems-
I, Vol. 53, No 12, pp. 2548-2566, Dec-2006.
Costas-Santos, J., Serrano-Gotarredona, T., Serrano-
Gotarredona R. and Linares-Barranco, B., 2007. A
Spatial Contrast Retina with On-chip Calibration for
Neuromorphic Spike-Based AER Vision Systems. IEEE
Trans. Circuits and Systems-I, vol. 54, No. 7, pp.
1444-1458, July 2007
Hafliger, P., 2007. Adaptive WTA with an Analog VLSI
Neuromorphic Learning Chip. IEEE Transactions on
Neural Networks, vol. 18, No 2, pp. 551-572. 2007.
Indiveri, G., Chicca, E., Douglas, R., 2006. A VLSI Array
of Low-Power Spiking Neurons and Bistables
Synapses with Spike-Timig Dependant Plasticity.
IEEE Transactions on Neural Networks, vol. 17, No 1,
pp 211-221. Jan-2006.
SIGMAP 2011 - International Conference on Signal Processing and Multimedia Applications
96