0 5 10 15 20 25 30 35
10
−30
10
−20
10
−10
10
0
10
10
Test #
Relative residuals
Relative residuals for CARE solvers
QR
QRP
SVD
care
Figure 4: Relative residuals of CARE solvers for CARE
benchmark examples.
4 CONCLUSIONS
Main issues related to the structure-preserving al-
gorithms for solving some essential control prob-
lems in optimal and robust systems analysis and de-
sign are summarized. Eigenvalues and stable right
deflating subspaces are computed based on skew-
Hamiltonian/Hamiltonian pencils. The results for
eigenvalue computations, with applications, e.g., in
evaluating L
∞
- and H
∞
-norms, are very good. The
computation of stable deflating subspaces, with ap-
plications in CARE/DARE solvers, deserves further
investigation for difficult numerical problems.
ACKNOWLEDGEMENTS
The work was partially supported by the German Re-
search Foundation (DFG) and The MathWorks, Inc.
The collaboration with Peter Benner and Matthias
Voigt from TU Chemnitz is highly acknowledged.
REFERENCES
Abels, J. and Benner, P. (1999). CAREX—A collection
of benchmark examples for continuous-time algebraic
Riccati equations (Version 2.0). SLICOT Working
Note 1999-14. http://www.slicot.org/.
Bender, D. J. and Laub, A. J. (1987a). The linear-quadratic
optimal regulator for descriptor systems. IEEE Trans.
Automat. Contr., AC-32(8):672–688.
Bender, D. J. and Laub, A. J. (1987b). The linear-quadratic
optimal regulator for descriptor systems: Discrete-
time case. Automatica, 23(1):71–85.
Benner, P., Byers, R., Losse, P., Mehrmann, V., and
Xu, H. (2007). Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems. Technical
report, Technische Universit¨at Chemnitz, Chemnitz.
Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002).
Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils. SIAM J. Ma-
trix Anal. Appl., 24(1):165–190.
Benner, P., Kressner, D., Sima, V., and Varga, A.
(2010). Die SLICOT-Toolboxen f¨ur Matlab. at—
Automatisierungstechnik, 58(1):15–25.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
Varga, A. (1999). SLICOT — A subroutine library in
systems and control theory. In Applied and Compu-
tational Control, Signals, and Circuits, vol. 1, ch. 10,
499–539. Birkh¨auser, Boston.
Bojanczyk, A. W., Golub, G., and Van Dooren, P. (1992).
The periodic Schur decomposition: algorithms and
applications. In Proc. of the SPIE Conference,
vol. 1770, 31–42.
Boyd, S., Balakrishnan, V., and Kabamba, P. (1989). A bi-
section method for computing the H
∞
norm of a trans-
fer matrix and related problems. Mathematics of Con-
trol, Signals, and Systems, 2(3):207–219.
Bruinsma, N. A. and Steinbuch, M. (1990). A fast algo-
rithm to compute the H
∞
-norm of a transfer function.
Systems & Control Letters, 14:287–293.
Lancaster, P. and Rodman, L. (1995). The Algebraic Riccati
Equation. Oxford University Press, Oxford.
Laub, A. J. (1979). A Schur method for solving algebraic
Riccati equations. IEEE Trans. Automat. Contr., AC–
24(6):913–921.
MATLAB (2010). The MATLAB Control System Toolbox.
Version 9.0.
Mehrmann, V. (1991). The Autonomous Linear Quadratic
Control Problem. Theory and Numerical Solution,
volume 163 of Lect. Notes in Control and Information
Sciences. Springer-Verlag, Berlin.
Pappas, T., Laub, A. J., and Sandell, N. R. (1980). On
the numerical solution of the discrete-time algebraic
Riccati equation. IEEE Trans. Automat. Contr., AC–
25(4):631–641.
Sima, V. (1996). Algorithms for Linear-Quadratic Opti-
mization. Marcel Dekker, Inc., New York.
Sima, V. (2006). Efficient algorithm for L
∞
-norm calcu-
lations. In 5th IFAC Symposium on Robust Control
Design, July 5–7, 2006, Toulouse, France.
Sima, V. (2010). Structure-preserving computation of stable
deflating subspaces. In Proceedings of the 10th IFAC
Workshop “Adaptation and Learning in Control and
Signal Processing”, Antalya, Turkey, 26–28 August
2010 — Kudret Press & Digital Printing Co.
Sreedhar, J. and Van Dooren, P. (1994). Periodic Schur form
and some matrix equations. In Proc. of the Symposium
on the Mathematical Theory of Networks and Systems,
vol. 1, 339–362, Regensburg, Germany.
Van Dooren, P. (1981). A generalized eigenvalue approach
for solving Riccati equations. SIAM J. Sci. Stat. Com-
put., 2(2):121–135.
Xu, H. (2006). On equivalence of pencils from discrete-time
and continuous-time control. Lin. Alg. Appl., 414:97–
124.
ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics
96