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Abstract: This paper addresses the problem of computing maximal robustly positively invariant sets for discrete-time
linear time-invariant systems with disturbance inputs. It is assumed that the disturbance is unknown, additive,
but bounded. The main contribution is the determination of bound of the number of steps in the iterative
construction of the maximal invariant sets.

1 INTRODUCTION

Set invariance plays a fundamental role in the analy-
sis and design of control systems for constrained sys-
tems, since if the initial state is contained inside an
invariant set, all future states will stay within the set
and hence will satisfy the imposed system constraints,
(Blanchini, 1999).

In literature, two types of convex sets are essen-
tially used as candidate invariant sets: ellipsoidal and
polyhedral sets. The use of ellipsoidal sets has the
advantage that the complexity is fixed, (Kurzhanski
and Varaiya, 2000), (Kurzhanski and Varaiya, 2002).
However, they have a rather restricted shape, which
may be very conservative in typical problems.

In this paper we will focus only on polyhedral sets
in conjunction with linear dynamics.

The construction of maximal robustly positively
invariant set for linear time-invariant (LTI) systems
was studied in literature in different contexts, see
for example the study in (Kolmanovsky and Gilbert,
1998). The method, proposed in this early studies
constructs an invariant set by iteratively adding ad-
ditional constraints until invariance is obtained. How-
ever, the iterative number is unknown in advance and
can be very large.

In this paper we provide a novel method for con-
structing maximal robustly positively invariant sets
for LTI systems that does not suffer from these draw-
backs. Based on forward reachable sets, the method
provides additional insight for a better understanding
of the properties of the maximal robustly positively
invariant sets. We will also discuss a method for com-
puting an a priori lower bound relevant to the pro-
posed method.

From literature, only the work in (Rakovic et al.,
2004) proposed a method for determining an upper
bound of the number of steps in the iterative con-
struction of the maximal invariant sets. The method
presented in the current paper offers a slight improve-
ment for this upper bound.

The following notation will be used throughout
the paper.N , {0,1,2, . . .} denotes the set of non-
negative integers,N+ denotes the setN \0 andNs ,

{0,1,2, . . . ,s − 1}. Whenever time is unspecified, a
variablex stands forx(k) for somek ∈ N.

For someε > 0 we denoteBn
p(ε) = {x ∈ Rn :

‖x‖p ≤ ε}, where‖x‖p is the p−norm of the vector
x = [x1 x2 . . .xn]

T , i.e. ‖x‖p = (|x1|
p + |x2|

p + . . .+

|xn|
p)

1
p .

Given two setsX1 ⊂ Rn and X2 ⊂ Rn, the
Minkowski sum of the setsX1 andX2 is defined by
X1⊕X2 , {x1+x2| x1 ∈ X1,x2 ∈ X2}. The Pontryagin
difference of the setX1 with respect toX2 is defined
by X1⊖X2 = {x| x+ x2 ∈ X1, for all x2 ∈ X2}.

The setX1 is a proper subset of the setX2 if and
only if X1 lies strictly insideX2.

A C-set is a convex and compact set containing
the origin as an interior point.

A polyhedron, or a polyhedral set, is the intersec-
tion of a finite number of half spaces. A polytope is a
closed and bounded polyhedral set.

The paper is organized as follows. Section 2 deals
with a general framework of robustly positively in-
variant sets. Section 3 is concerned with the mini-
mal robustly positively invariant set while Section 4
is concerned with the maximal robustly constraint-
admissible set. Section 5 is dedicated to the problem
of computing an a priori lower bound. The simulation
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results are evaluated in Section 6 before drawing the
conclusions.

2 ROBUSTLY POSITIVELY
INVARIANT SET

Consider the following discrete-time linear time-
invariant system:

x(k+1) = Ax(k)+ω(k) (1)

wherex(k) ∈ Rn andω(k) ∈ Rn.
The state is subject to the following polytopic con-

straint:
x ∈ X (2)

whereX = {x|Hxx ≤ Kx} is a C-set.
We assume that the disturbance sequenceω satis-

fies the constraint:

ω ∈W (3)

whereW = {ω|Hwω ≤ Kw} is a C-set.
Recall the following definitions from (Blanchini

and Miani, 2008):

Definition 1 (RPI Set). The setΩ is robustly pos-
itively invariant (RPI) for system (1) if and only if
Ax+ω ∈ Ω for all ω ∈W and allx ∈ Ω. Equivalently
Ω is RPI if and only ifAΩ⊕W ⊆ Ω.

Definition 2 (mRPI). The setF∞ is minimal RPI
(mRPI) if it is a RPI set and contained in any RPI
set.

It is well known that if the matrixA is not strictly
stable, thenF∞ is unbounded. Therefore, in the se-
quel, we consider only the case whenA is strictly sta-
ble.

It is also known that, the mRPI set is unique, com-
pact and - in the case whenW contains the origin -
contains the origin.

Definition 3 (MRPI). The setO∞ is maximal RPI
(MRPI) if it is a RPI set and contains every RPI set
under a set of constraints (2), (3).

If the MRPI set is non-empty, then it is unique.
Furthermore ifX is a C set then the MPRI set is also
a C set.

The link between the mRPI setF∞ and the MRPI
set O∞ is given by the following theorem ((Kol-
manovsky and Gilbert, 1998)):

Theorem 1.The following statements are equivalent:

1. the MRPI setO∞ is non-empty,

2. F∞ ⊂ X ,

3. X ⊖F∞ contains the origin, where⊖ denotes the
Pontryagin difference.

Proof. The proof is not reported here. The reader is
referred to (Kolmanovsky and Gilbert, 1998) for more
details. �

Definition 4 (RAS). A setΩ is a robustly constraint-
admissible set (RAS) for system (1) if and only
if Akx + Ak−1ω(0) + Ak−2ω(1) + . . . + ω(k − 1) ∈
X ,∀k ∈ N for all ω ∈ W and allx ∈ Ω. Furthermore
if Ω contains every robustly constraint-admissible set
then Ω is a maximal robustly constraint-admissible
set (MRAS).

Theorem 2. The setΩ is a MRAS for system (1) if
and only if this set is a MRPI set.

Proof. If Ω is MRPI and contained inX , thenAx+
ω ∈ Ω ⊆ X for anyω ∈ W andx ∈ Ω. HenceΩ is a
robustly constraint-admissible set, soΩ is contained
in a MRAS.

Conversely,Ω is a MRAS. One hasA2Ω⊕AW ⊕
W ⊆ X or A(AΩ⊕W )⊕W ⊆ X or AΩ1 ⊕W ⊆ X ,
where Ω1 = AΩ ⊕W . That meansΩ1 is a RAS.
Hence,Ω1 ⊆ Ω or in another words,Ω is robustly
invariant set and contained in the MRPI set. �

From the above theorem, one can conclude that
the problem of finding MRPI sets is equivalent to the
problem of finding MRAS. Therefore, in the rest of
the paper, we consider only the problem of finding
the MRAS for a given linear dynamics.

3 MINIMAL ROBUSTLY
POSITIVELY INVARIANT SET

This section addresses the problem of approximating
a mRPI.

It can be shown that in (Rakovic et al., 2005) the
mRPI setF∞ is the limit set of all the possible trajec-
tories of (1) and defined as:

F∞ =
∞

∑
i=0

AiW

SinceF∞ is a Minkowski sum of infinitely many
terms, its exact computation can be assured only un-
der restrictive assumptions of nilpotent system dy-
namics, (Mayne and Schroeder, 1997).

Recall the following definition:

Definition 5 (mRPI ε−approximation). Given a
scalarε > 0 and a setΩ ⊂ Rn, the setΦ ⊂ Rn is an
outerε−approximation ofΩ if

Ω ⊆ Φ ⊆ Ω⊕Bn
p(ε) (4)

and an innerε−approximation ofΩ if

Φ ⊆ Ω ⊆ Φ⊕Bn
p(ε) (5)
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Figure 1: Approximation ofF∞ for example 1.

Denote

Fk =
k−1

∑
i=0

AiW

Theorem 3. If the setW contains the origin in its
interior, then there exists a finite integerr ∈ N+ and a
scalarε ∈ (0,1] that satisfies:

ArW ⊆ εW (6)

If (6) is satisfied, then

F(ε,r) = (1− ε)−1Fr (7)

is a convex, compact, RPI set of (1). Furthermore
F(ε,r) andF∞ ⊂ F(ε,r).

Proof. The proof is omitted here. The reader is re-
ferred to (Rakovic et al., 2005) for more details on
this topic. �

4 MAXIMAL ROBUSTLY
CONSTRAINT-ADMISSIBLE
SET

In this section we consider the problem of the exact
computation of the MRAS and start with the assump-
tion that the mRPI setF∞ is a proper subset ofX .

Remark 1. The assumptionF∞ ⊂X is uncheckable but
practically realistic by the fact that once we have an
outer approximation, we can verify its inclusion inX .

Define the setΩ(s) by:

Ω(s) =























x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

{x} ⊆ X
{Ax}⊕W ⊆ X

. . .

{As−1x}⊕
s−2⊕

k=0

AkW ⊆ X























(8)

Theorem 4.There exists an indexs that satisfies:

AsX ⊕As−1W ⊕As−2W ⊕ . . .⊕W ⊆ X (9)

and the setΩ(s) defined in (8) is a MRAS for system
(1).

Proof. One has

AsX ⊕
s−1⊕

k=0

AkW ⊆ AsX ⊕
∞⊕

k=0

AkW ⊆ AsX ⊕F∞ (10)

The fact thatA is strictly stable andF∞ is a proper
subset ofX confirm the existence of the indexs by
the fact that there will always an integer which makes
AsX arbitrarily small.

For the second part of theorem, ift ∈ Ns =
{0,1, . . . ,s−1}, by the definition of the setΩ(s), for
anyx ∈ Ω(s) and anyw(k) ∈W for k = 0,1, . . . , t −1
one has

Atx⊕
t−1⊕

k=0

Akw(k) ∈ X (11)

If t ∈N andt ≥ s, it is possible to find a pairp∈N,
p ≥ 1 andq∈ Ns = {0,1, . . . ,s−1} such thatt = ps+

q. DenoteΨ = AtΩ(s)⊕
t−1⊕

k=0

AkW , it follows that:

Ψ = Aps+qΩ(s)⊕
ps+q−1⊕

k=0

AkW

= Aps{AqΩ(s)⊕
q−1⊕

k=0

AkW}⊕
ps−1⊕

k=0

AkW

⊆ ApsX ⊕
ps−1⊕

k=0

AkW

= A(p−1)s{AsX ⊕
s−1⊕

k=0

AkW}⊕

(p−1)s−1⊕

k=0

AkW

⊆ A(p−1)sX ⊕

(p−1)s−1⊕

k=0

AkW

. . .

= AsX ⊕
s−1⊕

k=0

AkW

⊆ X

Thus, for every t ∈ N, one has AtΩ(s) ⊕
t−1⊕

k=0

AkW ⊆ X , henceΩ(s) is a constraint-admissible

set. The fact thatΩ(s) is a MRAS follows from the
construction of this set. �

Clearly, if Ψ is any RPI set such thatF∞ ⊂ Ψ ⊂ X
andAsX ⊕Ψ ⊂ X , then the setΩ(s) is a MRAS. This
set Ψ can be obtained upon ultimate bounds in the
case whenA has real eigenvalues, for example using
the results provided in the next theorem.

Theorem 5. (Kofman et al., 2007) Consider the sys-
tem (1), letA = T JT−1 be the Jordan decomposition
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of A and consider a bounding box for the setW . If
this bounding box is described by the vectorω̄ which
satisfies|ω| ≤ ω̄, ∀ω ∈W then the set:

Ψ = {x
∣

∣

∣

∣T−1x
∣

∣ ≤ (I−|J|)−1
∣

∣T−1
∣

∣ ω̄} (12)

is RPI, and thus containsF∞.

Remark 2: Note that for anys1 ands2 that verify (9)
one hasΩ(s1) = Ω(s2). One would like to find the
smallest value ofs such that (9) holds in order to re-
duce the number of redundant inequalities.

It is clear that, the setΩ(s) can be determined as
follows:

Ω(s) =



















x

∣

∣

∣

∣

∣

∣

∣

∣

∣











Hx
HxA

...
HxAs−1











x ≤ Kx −Ks



















(13)

whereKs is a solution of the followings linear pro-
grams

Ks = max
ω(0),...,ω(s−1)













0 0 . . . 0
Hx 0 . . . 0

HxA Hx . . . 0
. . . . . .

HxAs−2 HxAs−3 . . . Hx

























ω(0)
ω(1)

...
ω(s−1)













subject to

ω(k) ∈W, k = 0,2, . . . ,s−1

It is worth noticing that the setΩ(s) = {x|Hx ≤
K} may contain redundant inequalities. One can use
the algorithm in (Kerrigan, 2000) to eliminate these
inequalities.

5 A PRIORI LOWER BOUND
COMPUTATION

In this section we will consider the problem of find-
ing the smallest value ofs such that the condition (9)
holds.

5.1 The Theoretical Principle

One has

F∞ =
⊕∞

k=0 AkW =
⊕s−1

k=0 AkW ⊕
⊕∞

k=s AkW
=

⊕s−1
k=0 AkW ⊕AsF∞

then

X ⊖F∞ = X ⊖ (
⊕s−1

k=0 AkW ⊕AsF∞)

⊇ (X ⊖
⊕s−1

k=0 AkW )⊖AsF∞
⊇ AsX ⊖AsF∞
⊇ As(X ⊖F∞)

(14)

Let X1 = X ⊖F∞ = {x|H1
x x ≤ K1

x }, it follows that
AsX1 ⊆ X1, so our problem is reduced to find the index
s such thatAsX1 ⊆ X1.

Remark 3: Indeed, we obtain only bounds and not the
exact index due to the fact that Pontryagin difference
and Minkowski addition are not commutative opera-
tions.

Remark 4: Using the result in (Rakovic et al., 2004)
an alternative upper boundr is obtained by exploiting
the following set inclusion:

ArX ⊆ X ⊖F∞

It is clear that the bound in (14) represents an im-
provement with respect to the result in (Rakovic et al.,
2004) by the fact thatX ⊖F∞ ⊆ X .

5.2 Numerical Construction

Let pl(k) andpr(k) be solutions of following 2n linear
programs:

pl(k) = minxk

s.t. H1
x x ≤ K1

x ,
(15)

and
pr(k) = min−xk

s.t. H1
x x ≤ K1

x ,
(16)

Define matricesRout andRin as follows:

Rout =









Ro(1) 0 . . . 0
0 Ro(2) . . . 0
...

...
.. .

...
0 0 . . . Ro(n)









(17)

whereRo(k) = max(
∣

∣pl(k)
∣

∣ , |pr(k)|), k = 1,2, . . . ,n,
and

Rin =









Ri(1) 0 . . . 0
0 Ri(2) . . . 0
...

...
.. .

...
0 0 . . . Ri(n)









(18)

whereRi(k) = min(
∣

∣pl(k)
∣

∣ , |pr(k)|), k = 1,2, . . . ,n.
A setΦout defined as

Φout = {x ∈ Rn|x = Routd,‖d‖∞ ≤ 1} (19)

is the smallest orthotope that containsX1.
And a setΦin defined as

Φ1
in = {x ∈ Rn|x = R1

ind,‖d‖∞ ≤ 1} (20)

is the biggest orthotope that is contained inX1.
In the case, when matrixA is not diagonizable, one

can use the following algorithm to find the smallest
indexs such thatAsX1 ⊆ X1.

Consider the case when matrixA is diagonizable
with A = T JT−1, whereT is a nonsingular matrix,J
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Algorithm 1: Computation of the smallest index.
The case when matrixA is not diagonizable.

Input : X1, A
Output : so
2. Sets = 1 ;
3. if AsX1 ⊆ X1 then

Setso = s and stop
else

Continue
end
4. Sets = s+1 and go to step 3.

is a diagonal matrix of the eigenvalues ofA and the
spectral radiusρ(A) ∈ (0,1). It is clear that ifAsx ⊆
Φin for anyx ∈ Φout thenAsx ∈ X1 for anyx ∈ X1. It
follows that

AsΦout ⊆ Φ1
in

⇒ AsRoutd ⊆ Φ1
in, ‖d‖∞ ≤ 1

⇒ |As|1 ≤ α,α = min R1
in(i,i)

Rout (i,i)
, i=1,2, . . . ,n

⇒ |T |1
∣

∣T−1
∣

∣

1 ρs ≤ α

⇒ s ≥
ln (α)−ln(|T |1|T−1|1)

ln (ρ)

Denoting⌈s⌉ the smallest integer greater or equal
to s, the set inclusionAsX1 ∈ X1 is satisfied for every
s such thats ≥ s∗, where:

s∗ =

⌈

ln(α)− ln(|T |1
∣

∣T−1
∣

∣

1)

ln(ρ)

⌉

(21)

It is clear that thiss∗ may be not the smallest in-

teger such thatAsX ⊕
s−1⊕

i=0

AiW ⊆ X holds. To the best

of our knowledge, there is no effective method to de-
termine analytically suchs. One may use a bisection
method for computing the smallests, as follows:

Algorithm 2: Computation of the smallest index.

Input : s∗, X , W , A
Output : so
2. Sets1 = 0,s2 = s∗ ;
3. Sets = ⌈ s1+s2

2 ⌉ ;

4. if AsX ⊕
s−1⊕

k=1

AkW ⊆ X then

sets2 = s
else

s1 = s
end
5. if s2− s1 = 1 then

setso = s2 and stop
else

go to step 3
end

Remark 5. The conditionAsX ⊕
s−1⊕

k=1

AkW ⊆ X can be

verified by solving the following linear programs:

J = max{HxAsx+HxAs−1ω(0)+ . . .+Hxω(s−1)}
s.t. x ∈ X

ω(i) ∈W, i = 1,2, . . . ,s−1

and after that checking conditionJ ≤ Kx.

6 EXAMPLES

To show the effectiveness of the proposed method,
two examples will be considered in this section. For
both of these examples, to solve linear programs, we
used the Multi-parametric toolbox, (Kvasnica et al.,
2004).

6.1 Example 1

This example is taken from (Rakovic and Fiacchini,
2008). Consider the following discrete-time linear
time-invariant system:

x(k+1) = Ax(k)+ω(k) (22)

where

A=0.9

(

cos(θ) sin(θ)
−sin(θ) cos(θ)

)

=

(

0.8916 0.1225
−0.1225 0.8916

)

with θ = π
3 and

X = {x ∈ R2|‖x‖∞ ≤ 100}∩{x ∈ R2|x2 ≥−20}.
(23)

The disturbance set is

W = {ω ∈ R2|‖ω‖∞ ≤ 0.01} (24)

Figure 1 presents the disturbance setW and the
RPI set obtained by using theorem 3.

Using algorithm 1, one obtainsso = 19.
Figure 2 shows the maximal robustly positively in-

variant setO∞.

Figure 2: the MRPI setO∞ for example 1.
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6.2 Example 2

To show the ability of the algorithm to cope efficiently
with a higher order systems, we will use a 4th order
system in this example.

Consider the following discrete-time linear time-
invariant system:

x(k+1) = Ax(k)+ω(k) (25)

where

A =







0.5042 0.0618 0.6935 0.1406
0.3070 0.1811 0.4636 −0.0106
−0.4748 −0.0911 0.1162 0.1502
0.1940 0.0771 0.6828 0.3539







and

X = {x ∈ R4| ‖x‖∞ ≤ 50}∩{x ∈ R4|

∣

∣

∣

∣

∣

4

∑
i=1

xi

∣

∣

∣

∣

∣

≤ 10}

The disturbance set is

W = {ω ∈ R4| ‖ω‖∞ ≤ 0.1}

Using theorem 3, Figure 3 illustrates the distur-
bance setW and the RPI set withε = 0.32 andr = 4.

Figure 3: Approximation ofF∞ for example 2, cut through
x4 = 0.

Using algorithm 1, one obtainsso = 7.
Figure 4 illustrates the maximal robustly posi-

tively invariant setO∞.

7 CONCLUSIONS

This paper discussed the characterization of the maxi-
mal robustly positively invariant sets for discrete-time
linear time-invariant systems with disturbance inputs
by providing upper bounds for the iterative construc-
tion.

It was shown that the maximal robustly positively
invariant set and the maximal robustly constraint-
admissible set are the same. Examples of a second
order plant, and a fourth order plant are given.

The simulation results show the effectiveness of
the proposed methods.

Figure 4: The maximal robustly positively invariant set for
example 2, cut throughx4 = 0.

REFERENCES

Blanchini, F. (1999). Set invariance in control* 1.Automat-
ica, 35(11):1747–1767.

Blanchini, F. and Miani, S. (2008).Set-theoretic methods in
control. Springer.

Kerrigan, E. (2000). Robust constraint satisfaction: Invari-
ant sets and predictive control.Department of Engi-
neering, University of Cambridge, UK.

Kofman, E., Haimovich, H., and Seron, M. (2007). A
systematic method to obtain ultimate bounds for per-
turbed systems. International Journal of Control,
80(2):167–178.

Kolmanovsky, I. and Gilbert, E. (1998). Theory and com-
putation of disturbance invariant sets for discrete-time
linear systems.Mathematical Problems in Engineer-
ing, 4(4):317–363.

Kurzhanski, A. and Varaiya, P. (2000). Ellipsoidal tech-
niques for reachability analysis: internal approxima-
tion* 1. Systems & Control Letters, 41(3):201–211.

Kurzhanski, A. and Varaiya, P. (2002). On ellipsoidal tech-
niques for reachability analysis. part i: External ap-
proximations. Optimization methods and software,
17(2):177–206.

Kvasnica, M., Grieder, P., Baotic, M., and Morari, M.
(2004). Multi-parametric toolbox (MPT).Hybrid Sys-
tems: Computation and Control, pages 121–124.

Mayne, D. and Schroeder, W. (1997). Robust time-optimal
control of constrained linear systems.Automatica,
33(12):2103–2118.

Rakovic, S. and Fiacchini, M. (2008). Invariant Approx-
imations of the Maximal Invariant Set or Encircling
the Square. InIFAC World Congress, Seoul, Korea.

Rakovic, S., Kerrigan, E., Kouramas, K., and Mayne, D.
(2004). Invariant approximations of robustly posi-
tively invariant sets for constrained linear discrete-
time systems subject to bounded disturbances.De-
partment of Engineering University of Cambridge,
Tech. Rep. CUED/F-INFENG/TR, 473.

Rakovic, S., Kerrigan, E., Kouramas, K., and Mayne, D.
(2005). Invariant approximations of the minimal ro-
bust positively invariant set.IEEE Transactions on
Automatic Control, 50(3):406–410.

ON MAXIMAL ROBUSTLY POSITIVELY INVARIANT SETS

305


