Table 5: Error values produced with DASA standard and DASA elitist-C for function f1-f6.
FEs Error
Algorithm Function
f1 f2 f3 f4 f5 f6
500,000
Best
standard
3,52E-012 1,67E-002
2,21E-001 5,80E-012 3,75E-012 6,11E-012
elitist-C
0,5 6,54E-012 4,38E-002 1,85E-001 8,07E-012
2,76E-012
6,34E-012
0,6 4,32E-012 5,29E-002 2,18E-001 7,05E-012 3,21E-012 6,51E-012
0,7 5,46E-012 1,13E-001
5,88E-003
7,16E-012 3,38E-012
6,00E-012
0,8 3,69E-012 3,20E-001 3,26E-001 7,05E-012 3,10E-012 6,48E-012
0,9 4,49E-012 2,20E+000 1,40E+001
5,06E-012
3,67E-012 6,99E-012
Worst
standard 1,42E-011
3,54E-002
1,41E+003 2,73E-011 1,17E-011 1,15E-011
elitist-C
0,5 1,72E-011 9,09E-002 1,33E+003 2,25E-011
8,92E-012 1,10E-011
0,6
1,27E-011
1,17E-001 1,29E+003 2,43E-011 1,34E-011 1,14E-011
0,7 1,49E-011 2,27E-001 7,44E+002 2,16E-011 9,86E-003
1,10E-011
0,8 1,35E-011 6,40E-001 1,22E+003
2,02E-011
1,21E-011 1,39E-011
0,9 1,57E-011 3,83E+000
5,66E+002
2,12E-011 1,83E-011 1,42E-011
Mean
standard 9,51E-012
2,44E-002 1,66E+002
1,19E-011 6,55E-012
8,17E-012
elitist-C
0,5 1,05E-011 6,46E-002 3,00E+002 1,40E-011
5,71E-012
8,74E-012
0,6 8,90E-012 9,30E-002 1,75E+002 1,25E-011 5,93E-012 8,46E-012
0,7 9,61E-012 1,70E-001 1,85E+002 1,26E-011 6,90E-004 8,70E-012
0,8
8,72E-012
4,47E-001 2,59E+002 1,18E-011 6,15E-012 9,28E-012
0,9 9,41E-012 2,97E+000 2,01E+002
1,15E-011
6,49E-012 9,78E-012
Table 6: Number of iteration needed by DASA elitist-C to obtain an error under 1E-9.
Function f1 f4 f5 f6
FEs time[s] FEs time[s] FEs time[s] FEs time[s]
Minimum
0,5 48.211 1,9960 49.111 2,4960 44.251 2,6520 75.951 3,9630
0,6 47.611 1,8560 52.931 2,5740 44.651 2,5430 78.321 3,8220
0,7 48.261 1,7470 54.771 2,5270 44.641 2,4490 77.551 3,5880
0,8 48.661
1,6530
55.451 2,4180 46.111
2,4180
80.711
3,5410
0,9 53.331 1,6690 55.391
2,2780
51.341 2,5740 86.161 3,5720
Maximum
0,5 52.701 2,2000 119.482 6,2710 328.526 20,7480 84.241 4,5710
0,6 52.921 2,0440 123.682 6,1460 392.797 23,5870 84.391 4,1180
0,7 54.011 1,9500 141.902 6,5990 >500.000 >19,0630 86.801 4,0090
0,8 54.981 2,4650 146.092 6,5050 350.256 18,9700 89.361 4,4150
0,9 59.631 2,4500 214.523 9,1100 376.516 20,0770 96.571 4,1810
Mean
0,5 50.041,40 2,0802 63.460,24 3,2392 84.289,28
5,1910
80.400,20 4,2001
0,6 50.349,00 1,9524 72.306,76 3,5294 103.546,80 6,0865 81.451,00 3,9786
0,7 50.755,80 1,8377 67.517,44 3,1000 >139.199,08 7,5730 82.566,60 3,8201
0,8 52.055,40
1,7890
68.731,88 3,0052 108.038,00 5,8419 83.873,40
3,7091
0,9 56.746,60 1,8433 70.185,88
2,9072
132.655,44 6,8709 92.127,00 3,8401
REFERENCES
Bauer, A., Bullnheimer, B., Hartl, R. F., Strauss, C., 1999.
An ant colony optimization approach for the single
machine total tardiness problem, In: Proceedings of
CEC’99, pp. 1445–1450, IEEE Press, Piscataway, NJ.
Bilchev, G., Parmee, I.C., 1995. The ant colony metaphor
for searching continuous design spaces, In: T.C.
Fogarty (Ed.), Evolutionary Computing, Lecture Notes
in Computer Science, vol. 993, Sheeld, UK, pp. 25–39.
Dorigo, M., Maniezzo, V., Colorni, A., 1996. Ant system:
optimization by a colony of cooperating agents, IEEE
Trans. Systems, Man, Cybernet.-Part B 26 (1) 29–41.
Korošec, P., 2006. Stigmergy as an Approach to
Metaheuristic Optimization, Ph.D. Thesis, Jozef
Stefan International Postgraduate School, Ljubljana,
Slovenia.
Monmarche, N., Venturini, G., Slimane, M., 2000. On
how pachycondyla apicalis ants suggest a new search
algorithm, Future Generation Computer Systems, Vol.
16 No. 8, pp. 937-46.
Socha, K., 2004. ACO for continuous and mixed-variable
optimization, in Proceedings of fourth international
workshop on ant colony optimization and swarm
intelligence (ANTS'2004), Brussels, Belgium.
Tang, K., Yao, X., Suganthan, P. N., MacNish, C., Chen,
Y. P., Chen, C. M. and Yang, Z., 2007. “Benchmark
functions for the CEC’2008 special session and
competition on large scale global optimisation”,
Technical Report NCL-TR-2007012, University of
Science and Technology of China, Hefei.
TWO ELITIST VARIANTS OF DIFFERENTIAL ANT-STIGMERGY ALGORITHM
141