clude more proteins like capping proteins which stop
the elongation of the filament (Pollard and Cooper,
1986).
ACKNOWLEDGEMENTS
We are grateful for financial support of the research
training school “Welisa”, which is founded by the
German Research Foundation (DFG 1505/1). Fur-
thermore the authors are thankful for the helpful ad-
vice of Prof. Mike Holcombe and Mark Burkitt from
the University of Sheffield.
REFERENCES
Andrews, S. S. and Bray, D. (2004). Stochastic simulation
of chemical reactions with spatial resolution and sin-
gle molecule detail. Phys. Biol., 1(3-4):137–151.
Cardelli, L., Caron, E., Gardner, P., Kahramano˘gulları, O.,
and Phillips, A. (2009). A process model of actin
polymerisation. Electronic Notes in Theoretical Com-
puter Science, 229(1):127–144. Proceedings of the
Second Workshop From Biology to Concurrency and
Back (FBTC 2008).
Cooper, J. A. (1991). The role of actin polymerization in
cell motility. Annu. Rev. Physiol., 53:585–605.
Corradini, F., Merelli, E., and Vita, M. (2005). A multi-
agent system for modelling carbohydrate oxidation in
cell. In Gervasi, O., Gavrilova, M., Kumar, V., La-
gan`a, A., Lee, H., Mun, Y., Taniar, D., and Tan, C.,
editors, Computational Science and Its Applications –
ICCSA 2005, volume 3481 of Lecture Notes in Com-
puter Science, pages 227–247. Springer Berlin / Hei-
delberg.
Edelstein-Keshet, L. and Ermentrout, G. B. (1998). Models
for the length distributions of actin filaments: I. simple
polymerization and fragmentation. Bull. Math. Biol.,
60(3):449–475.
Emonet, T., Macal, C. M., North, M. J., Wickersham, C. E.,
and Cluzel, P. (2005). Agentcell: a digital single-
cell assay for bacterial chemotaxis. Bioinformatics,
21(11):2714–2721.
Fujiwara, I., Vavylonis, D., and Pollard, T. D. (2007). Poly-
merization kinetics of adp- and adp-pi-actin deter-
mined by fluorescence microscopy. Proc. Natl. Acad.
Sci. U. S. A., 104(21):8827–8832.
Galletta, B. J., Mooren, O. L., and Cooper, J. A. (2010).
Actin dynamics and endocytosis in yeast and mam-
mals. Curr. Opin. Biotechnol., in Press.
Gheorghe, M., Stamatopoulou, I., Holcombe, M., and Ke-
falas, P. (2005). Modelling dynamically organised
colonies of bio-entities. In Banˆatre, J.-P., Fradet,
P., Giavitto, J.-L., and Michel, O., editors, Uncon-
ventional Programming Paradigms, volume 3566 of
Lecture Notes in Computer Science, pages 207–224.
Springer Berlin / Heidelberg.
Grabe, N. and Neuber, K. (2005). A multicellular systems
biology model predicts epidermal morphology, kinet-
ics and ca2+ flow. Bioinformatics, 21(17):3541–3547.
Guo, K., Shillcock, J., and Lipowsky, R. (2009). Self-
assembly of actin monomers into long filaments:
Brownian dynamics simulations. J. Chem. Phys.,
131(1):015102.
Holcombe, M. (1988). X-machines as a basis for dynamic
system specification. Softw. Eng. J., 3(2):69–76.
Kiran, M., Coakley, S., Walkinshaw, N., McMinn, P., and
Holcombe, M. (2008). Validation and discovery from
computational biology models. Biosystems, 93(1-
2):141–150.
Matschegewski, C., Staehlke, S., Loeffler, R., Lange, R.,
Chai, F., Kern, D. P., Beck, U., and Nebe, B. J. (2010).
Cell architecture-cell function dependencies on tita-
nium arrays with regular geometry. Biomaterials,
31(22):5729–5740.
Merelli, E., Armano, G., Cannata, N., Corradini, F.,
d’Inverno, M., Doms, A., Lord, P., Martin, A., Mi-
lanesi, L., M¨oller, S., Schroeder, M., and Luck, M.
(2007). Agents in bioinformatics, computational and
systems biology. Brief. Bioinform., 8(1):45–59.
Mogilner, A. and Edelstein-Keshet, L. (2002). Regulation
of actin dynamics in rapidly moving cells: a quantita-
tive analysis. Biophys. J., 83(3):1237–1258.
Nebe, J. G. B., Luethen, F., Lange, R., and Beck, U. (2007).
Interface interactions of osteoblasts with structured ti-
tanium and the correlation between physicochemical
characteristics and cell biological parameters. Macro-
mol. Biosci., 7(5):567–578.
Oda, T., Iwasa, M., Aihara, T., Ma´eda, Y., and Narita, A.
(2009). The nature of the globular- to fibrous-actin
transition. Nature, 457(7228):441–445.
Pantaloni, D., Clainche, C. L., and Carlier, M. F.
(2001). Mechanism of actin-based motility. Science,
292(5521):1502–1506.
Pelham, R. J. and Chang, F. (2002). Actin dynamics in
the contractile ring during cytokinesis in fission yeast.
Nature, 419(6902):82–86.
Pogson, M., Holcombe, M., Smallwood, R., and Qwarn-
strom, E. (2008). Introducing spatial information into
predictive nf-kappab modelling–an agent-based ap-
proach. PLoS One, 3(6):e2367.
Pogson, M., Smallwood, R., Qwarnstrom, E., and Hol-
combe, M. (2006). Formal agent-based modelling
of intracellular chemical interactions. Biosystems,
85(1):37–45.
Pollard, T. D. and Cooper, J. A. (1986). Actin and actin-
binding proteins. a critical evaluation of mechanisms
and functions. Annu. Rev. Biochem., 55:987–1035.
Robinson, R. C., Turbedsky, K., Kaiser, D. A., Marchand,
J. B., Higgs, H. N., Choe, S., and Pollard, T. D.
(2001). Crystal structure of arp2/3 complex. Science,
294(5547):1679–1684.
Stossel, T. P., Fenteany, G., and Hartwig, J. H. (2006).
Cell surface actin remodeling. J. Cell Sci., 119(Pt
16):3261–3264.
AGENT-BASED SIMULATION OF MOLECULAR PROCESSES - An Application to Actin-polymerisation
281