Gomez, F., Schmidhuber, J., and Miikkulainen, R. (2008).
Accelerated neural evolution through cooperatively
coevolved synapses. J. Mach. Learn. Res., 9:937–965.
Gomez, F. J. and Miikkulainen, R. (1999). Solving non-
markovian control tasks with neuroevolution. In Proc.
Int. joint Conf. on Artificial intelligence, pages 1356–
1361. Morgan Kaufmann Publishers Inc.
Gruau, F. (1994). Automatic definition of modular neural
networks. Adaptive Behaviour, 3:151–183.
Gruau, F., Whitley, D., and Pyeatt, L. (1996). A com-
parison between cellular encoding and direct encod-
ing for genetic neural network. In Genetic Program-
ming 1996:Proceeding of the First Annual conference,
pages 81–89 MIT Press.
Harding, S., Miller, J. F., and Benzhaf, W. (2010).
Developments in cartesian genetic program-
ming:selfmodifying cgp. GPEM, 11(2):397–439.
Hussain, T. and Browse, R. (2000). Evolving neural net-
works using attribute grammars. IEEE Symp. Combi-
nations of Evolutionary Computation and Neural Net-
works, 2000, pages 37 – 42.
Jacob, C. and Rehder, J. (1993). Evolution of neural
net architectures by a hierarchical grammar-based ge-
netic system. In Proc. ICANNGA93, pages 72–79.
Springer-Verlag.
Kandel, E. R., Schwartz, J. H., and Jessell (2002). Princi-
ples of Neural Science, 4rth Edition. McGraw-Hill.
Khan, G., Miller, J., and Halliday, D. (2007). Coevolution
of intelligent agents using cartesian genetic program-
ming. In Proc. GECCO’2007, pages 269 – 276.
Khan, M., Khan, G., and F. Miller, J. (2010a). Evolution
of optimal anns for non-linear control problems us-
ing cartesian genetic programming. In Proc. IEEE.
ICAI’2010.
Khan, M., Khan, G., and Miller, J. (2010b). Effi-
cient representation of recurrent neural networks for
markovian/non-markovian non-linear control prob-
lems. In Proc. ISDA’2010, pages 615–620.
Kitano, H. (1990). Designing neural networks using ge-
netic algorithm with graph generation system. Com-
plex Systems, 4:461–476.
McCloskey, M. and Cohen, N. (1989). Catastrophic in-
terference in connectionist networks: The sequential
learning problem. The Psychology of Learning and
Motivation, 24:109–165.
Miller, J. and Smith, S. (2006). Redundancy and com-
putation efficiency in cartesian genetic programming.
IEEE Trans. Evol. Comp., 10:167–174.
Miller, J. F. and Thomson, P. (2000). Cartesian genetic
programming. In Proc. EuroGP’2000, volume 1802,
pages 121–132.
Moriarty, D. (1997). Symbiotic Evolution of Neural Net-
works in Sequential Decision Tasks. PhD thesis, Uni-
versity of Texas at Austin.
Nicholas F.McPhee, Ellery Crane, S. E. and Poli, R. (2009).
Developmental plasticity in linear genetic program-
ming. Proc. GECCO’2009, pages 1019–1026.
Nolfi, S., Miglino, O., and Parisi, D. (1994). Phenotypic
plasticity in evolving neural networks. In Proc. Int.
Conf. from perception to action. IEEE Press.
Ratcliff, R. (1990). Connectionist models of recognition
and memory:constraints imposed by learning and for-
getting functions. Psychological Review, 97:205–308.
Risi, S., Hughes, C. E., and Stanley, K. O. (2010). Evolving
plastic neural networks with novelty search. Adaptive
Behavior.
Rivero, D., Rabual, J., Dorado, J., and Pazos, A. (2007).
Automatic design of anns by means of gp for
data mining tasks: Iris flower classification prob-
lem. Adaptive and Natural Computing Algorithms,
4431:276–285.
Roggen, D., Federici, D., and Floreano, D. (2007). Evo-
lutionary morphogenesis for multi-cellular systems.
GPEM, 8:61–96.
Rust, A., Adams, R., and H., B. (2000). Evolutionary neural
topiary: Growing and sculpting artificial neurons to
order. In Proc. ALife VII, pages 146–150. MIT Press.
Sharkey, N. and Sharkey, A. (1995). An analysis of catas-
trophic interference. Connection Science, 7(3-4):301–
330(30).
Sims, K. (1994). Evolving 3d morphology and behavior
by competition. In Artificial life 4 proceedings, pages
28–39. MIT Press.
Stanley, K. O., D’Ambrosio, D. B., and Gauci, J. (2009).
A hypercube-based encoding for evolving large-scale
neural networks. Artif. Life, 15:185–212.
Stanley, K. O. and Miikkulainen, R. (2002). Evolving neu-
ral network through augmenting topologies. Evolu-
tionary Computation, 10(2):99–127.
Wieland, A. P. (1991). Evolving neural network controllers
for unstable systems. In Proc. Int. Joint Conf. Neural
Networks, pages 667–673.
ICINCO 2011 - 8th International Conference on Informatics in Control, Automation and Robotics
458