NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS

Masafumi Kubota, Toshimichi Saito

2011

Abstract

This paper studies a discrete particle swarm optimizer for multi-solution problems. The algorithm consists of two stages. The first stage is global search: the whole search space is discretized into the local sub-regions each of which has one approximate solution. The sub-region consists of subsets of lattice points in relatively rough resolution. The second stage is local search. Each subregion is re-discretized into finer lattice points and the algorithm operates in all the subregions in parallel to find all approximate solutions. Performing basic numerical experiment, the algorithm efficiency is investigated.

References

  1. Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. Willey.
  2. Garro, B. A., Sossa, H., and Vazquez, R. A. (2009). Design of artificial neural networks using a modified particle swarm optimization algorithm. In Proc. IEEE-INNS Joint Conf. Neural Netw., pages 938-945.
  3. Kawamura, K. and Saito, T. (2010). Design of switching circuits based on particle swarm optimizer and hybrid fitness function. In Proc. Annual Conf. IEEE Ind. Electron. Soc., pages 1099-1103.
  4. Miyagawa, E. and Saito, T. (2009). Particle swarm optimizers with growing tree topology. IEICE Trans. Fundamentals, E92-A:2275-2282.
  5. Parsopoulos, K. E. and Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):211-224.
  6. Sevkli, Z. and Sevilgen, F. E. (2010). Discrete particle swarm optimization for the orienteering problem. In Proc. IEEE Congress Evol. Comput., pages 1973- 1944.
  7. Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., and Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput., 12(2):171-195.
  8. Wachowiak, M. P., Smolikova, R., Zheng, Y., and Zurada, J. M. (2004). An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):289-301.
  9. Yang, S. and Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput., 14(6):959-974.
  10. Yang, X.-S. and Deb, S. (2010). Eagle strategy using levy walk and firefly algorithms for stochastic optimization. Nature Inspired Cooperative Strategies for Optimization, 284:101-111.
Download


Paper Citation


in Harvard Style

Kubota M. and Saito T. (2011). NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 263-266. DOI: 10.5220/0003623102630266


in Bibtex Style

@conference{ecta11,
author={Masafumi Kubota and Toshimichi Saito},
title={NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)},
year={2011},
pages={263-266},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003623102630266},
isbn={978-989-8425-83-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)
TI - NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS
SN - 978-989-8425-83-6
AU - Kubota M.
AU - Saito T.
PY - 2011
SP - 263
EP - 266
DO - 10.5220/0003623102630266