NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS
Masafumi Kubota, Toshimichi Saito
2011
Abstract
This paper studies a discrete particle swarm optimizer for multi-solution problems. The algorithm consists of two stages. The first stage is global search: the whole search space is discretized into the local sub-regions each of which has one approximate solution. The sub-region consists of subsets of lattice points in relatively rough resolution. The second stage is local search. Each subregion is re-discretized into finer lattice points and the algorithm operates in all the subregions in parallel to find all approximate solutions. Performing basic numerical experiment, the algorithm efficiency is investigated.
References
- Engelbrecht, A. P. (2005). Fundamentals of computational swarm intelligence. Willey.
- Garro, B. A., Sossa, H., and Vazquez, R. A. (2009). Design of artificial neural networks using a modified particle swarm optimization algorithm. In Proc. IEEE-INNS Joint Conf. Neural Netw., pages 938-945.
- Kawamura, K. and Saito, T. (2010). Design of switching circuits based on particle swarm optimizer and hybrid fitness function. In Proc. Annual Conf. IEEE Ind. Electron. Soc., pages 1099-1103.
- Miyagawa, E. and Saito, T. (2009). Particle swarm optimizers with growing tree topology. IEICE Trans. Fundamentals, E92-A:2275-2282.
- Parsopoulos, K. E. and Vrahatis, M. N. (2004). On the computation of all global minimizers through particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):211-224.
- Sevkli, Z. and Sevilgen, F. E. (2010). Discrete particle swarm optimization for the orienteering problem. In Proc. IEEE Congress Evol. Comput., pages 1973- 1944.
- Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J.-C., and Harley, R. G. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans. Evol. Comput., 12(2):171-195.
- Wachowiak, M. P., Smolikova, R., Zheng, Y., and Zurada, J. M. (2004). An approach to multimodal biomedical image registration utilizing particle swarm optimization. IEEE Trans. Evol. Comput., 8(3):289-301.
- Yang, S. and Li, C. (2010). A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans. Evol. Comput., 14(6):959-974.
- Yang, X.-S. and Deb, S. (2010). Eagle strategy using levy walk and firefly algorithms for stochastic optimization. Nature Inspired Cooperative Strategies for Optimization, 284:101-111.
Paper Citation
in Harvard Style
Kubota M. and Saito T. (2011). NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 263-266. DOI: 10.5220/0003623102630266
in Bibtex Style
@conference{ecta11,
author={Masafumi Kubota and Toshimichi Saito},
title={NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)},
year={2011},
pages={263-266},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003623102630266},
isbn={978-989-8425-83-6},
}
in EndNote Style
TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: ECTA, (IJCCI 2011)
TI - NESTING DISCRETE PARTICLE SWARM OPTIMIZERS FOR MULTI-SOLUTION PROBLEMS
SN - 978-989-8425-83-6
AU - Kubota M.
AU - Saito T.
PY - 2011
SP - 263
EP - 266
DO - 10.5220/0003623102630266