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Abstract: Automatically mining entities, relationships, and semantics from unstructured documents and storing these 
in relational tables, greatly simplifies and unifies the work flows and user experiences of database products 
at the Enterprise. This paper describes three linear scale, incremental, and fully automatic semantic mining 
algorithms that are at the foundation of the new Semantic Platform being released in the next version of 
SQL Server. The target workload is large (10 – 100 million) enterprise document corpuses. At these scales, 
anything short of linear scale and incremental is costly to deploy. These three algorithms give rise to three 
weighted physical indexes: Tag Index (top keywords in each document); Document Similarity Index (top 
closely related documents given any document); and Phrase Similarity Index (top semantically related 
phrases, given any phrase), which are then query-able through the SQL interface. The need for specifically 
creating these three indexes was motivated by observing typical stages of document research, and gap 
analysis, given current tools and technology at the Enterprise. We describe the mining algorithms and 
architecture, and outline some compelling user experiences that are enabled by these indexes. 

1 INTRODUCTION 

Managing unstructured and structured data in 
separate systems leads to many problems, such as 
consistency control, synchronizing backups, and 
supporting multiple systems. Increasingly, this pain 
drives users to move unstructured data into relational 
databases. Such unstructured data includes files 
(e.g., office documents, PDFs) and large text 
fragments (e.g., emails, wiki pages, forum 
comments), etc. 

As users store more documents in databases, it is 
critical that databases help manage them. Doing so 
effectively requires more than storing and retrieving 
bits; it requires providing access to the information 
in documents. To illustrate, suppose a consumer 
products company keeps corporate documents in a 
database. These documents describe which 
employees work on which products, how products 
are related, how they compare to the competition, 
etc. However, if the database treats these documents 
merely as opaque bits, users cannot query this 
information. To address this, we introduce the 
Semantic Platform for SQL Server, which mines and 
then exposes structured concepts within unstructured 
data to database queries, by building three physical 

indexes: 1) Tag Index (TI), which can return the top 
keywords, given a document; 2) Document 
Similarity Index (DSI), which can return the most 
closely related documents, given any document; and 
3) Semantic Phrase Similarity Index (SPSI), which 
returns the top semantically related phrases, given 
any phrase. 

The view from one level up is that in SQL 
Server, we are building a tightly streamlined and 
integrated Document Understanding Platform, 
comprising Integrated Full Text Search (IFTS) and 
Semantic Platform for documents, under a unified 
functional surface of SQL language extensions. We 
avoid creating an entirely separate syntax for 
Semantic Platform, by merely extending the IFTS 
syntax that is already familiar to many customers. 
The processing flow and algorithms are highly 
optimized so that documents are crawled, parsed and 
mined in a unified, 1-pass algorithm. The algorithm 
is incremental, and efficiently updates the index as 
the corpus evolves over time (increments may be 
triggered both manually and automatically). The 
Full-Text Index (FTI) is one output, in order to 
satisfy the needs of document search. 
Simultaneously, document level semantics are 
mined into the three new indexes: TI, DSI, and 
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SPSI, without needing to re-crawl and re-parse the 
original documents. 

Additionally, the user does not have to go 
through any special configuration steps in order to 
tell the system about their data, e.g. set up special 
classifiers, etc. Everything involved in mining these 
indexes, figuring out what are the semantic concepts 
contained in the document corpus, how they cluster, 
etc., is fully automatic and inherent to the system. 
This means that we have created a very low barrier 
to entry for users of the document understanding 
system. 

We conducted experiments to verify two main 
properties: linear scalability and quality. Results 
show that building the FTI, TI, and DSI is linear and 
highly scalable. Also, experimental results show that 
both TI and DSI produce competitive precision 
numbers when compared to other methods. 

The rest of the paper is organized as follows: 
Section 2 describes related products and algorithms 
and then describes how we used customer and 
scenario focused design to help guide our design. In 
Section 3, we describe the overall architecture and 
algorithmic components. Experimental results are 
described in detail in section 4. We describe some 
potential applications in Section 5, and conclude and 
point to future work in Section 6. 

2 ALGORITHMIC LINEAGE  
AND DESIGN OBJECTIVES 

Starting in February 1990, the NSF has been 
publishing a set of goals for database research and 
commercialization every 5 years. The NSF 
prospectus (Silberschatz, 1996) clearly identifies the 
need to cover IR over unstructured and semi-
structured data and document processing, as a large 
emerging need for future database product lines. 
Fifteen years later we have Full-Text Search 
trending towards mainstream in multiple database 
product lines including Microsoft SQL Server; 
Oracle acquiring OpenText in 2008, etc. 

We are currently at the cusp of widespread 
adoption of document IR in the database, as 
predicted by leading NSF researchers. In the 
Enterprise space, Oracle, PostgreSQL, Microsoft 
and others are competing in order to become 
entrenched players in the space of Document 
Understanding. Oracle's Open Text (McNabb, 2007) 
has created integration with Share Point and 
Microsoft Duet (Office + SAP). Oracle Open Text 
offers a broad based document strategy, providing 

good support for web docs, via their Red Dot 
component, and over semi-structured data, by way 
of LiveLink. Semi-structured search is also 
supported with LiveLink ECM (McNabb, 2007). 
Microsoft’s primary products in the space of 
document understanding include SharePoint and 
FAST, and also in-database IFTS, which has been 
offered for a few releases now. 

At the algorithmic level, two semantic mining 
classics are Latent Semantic Indexing (LSI) 
(Deerwester, 1988), Probabilistic LSI, or PLSI, 
(Hofmann, 1999), and Latent Dirichlet Allocation 
(LDA) (Blei, 2003). These have been extensively 
used and built upon, in both Enterprise and Web 
based search. There are a number of approaches for 
extracting relevant keywords from a document, e.g. 
(Cohen, 1995). 

The main advantages of our semantic mining 
algorithms over the existing algorithms are that our 
algorithms scale linearly with the size of data, and as 
we show in the results section (Section 5), linear 
scale-out is achievable with additional 
computational resources. They are also incremental 
in nature. All of these are essential ingredients for 
mining large (e.g. 10 to 100 million) Enterprise 
document corpuses and keeping the indexes “fresh” 
as the corpus evolves over time.  

There are some similarities of our Semantic 
Phrase Similarity Indexing (SPSI) approach with 
PLSI: both these are statistically based and 
incremental; however, our approach takes a 
simplifying assumption over co-occurrences: that of 
i.i.d (independent and identical distributions), and 
generates the co-occurrence weights explicitly via 
Jaccard similarity, and propagates weights explicitly, 
via transitive closure. These explicit assumptions 
and operations are very useful for rigorous 
testability, in the application context of deploying in 
a relational database. 

In (Damashek, 1995) the authors propose a 
language-independent means of gauging topical 
similarity in unrestricted text, using character level 
n-grams and a simple vector-space technique to infer 
categorization and similarity. By contrast, we 
bootstrap our system with fairly large and complete 
statistical language models (LM), and work with 
ngrams over LM words that are output by the word 
breakers in our system (Full Text Search Overview), 
to cheaply inject high level structural and contextual 
constraints into our feature space very early on 
(almost at the outset). This saves compute time for 
our system. 

In a related work also based on character level n-
grams (Cohen, 1995), the authors are motivated to 
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construct a highlight/abstract extraction system that 
does not rely on any language-specific resources 
such as stemmers and stop lists, whereas the 
scenario is exactly opposite for IFTS and Semantic 
Platform in SQL Server, where the language is 
explicitly identified, and space constraints are not as 
tight. So we do employ stop lists, stemmers and 
sophisticated LMs as relatively cheap components 
from our perspective, to reduce CPU load, which 
aligns better with the more imperative aspects of our 
typical customer workload. 

In (Gabrilovich, 2007) the authors do inject 
language specific resources; they go one step further 
and use a knowledge model based on training a 
space of concepts on Wikipedia. Their Explicit 
Semantic Analysis (ESA) system reports good 
correlation with subjective evaluation, and also has 
the advantage of working over a vector space that 
makes intuitive sense compared to the above 
character-based vector space methods. 

However, at the Enterprise (the primary domain 
for SQL Server), a lot of the information tends to be 
very domain-specific, technical, and full of jargon 
and acronyms. For this reason we construct a system 
that does use a vector space of language ngrams, but 

stops short of constructing a vector space over a 
generic knowledge model, because we have found 
that these tend to be too generic.  

For document similarity, our approach is close to 
the classic vector space model (Salton, 1975). We 
use cosine-similarity over the documents represented 
in the vector space of weighted keywords, and use 
LM entropy to boost semantic salience to correlate 
well with subjective evaluation. 

Our approach to phrase similarity is close to 
(Hammouda, 2004). Whereas their objective is to 
ultimately use the phrase graph to infer document 
similarity, ours is to infer a semantic thesaurus that 
incorporates transitive relationships between 
phrases.  

We also focus on scalability aspects and linear 
approximation whilst generating a transitively closed 
phrase graph, because linear scale is pretty much a 
hard pre-requisite for SQL Server’s customer base. 
Most important from our perspective is the fact that 
our mining algorithms are tightly integrated as a 
cohesive system such that the documents are parsed 
or incrementally scanned in a single pass, and all the 
data flows linearly through the entire system to 
create the three new indexes, plus the already 
 

 

 
Figure 1: System design directly mirrors typical customer activities in researching large document corpuses: 1) FT1 enables 
full text search, returning references to the most relevant documents; 2) The next step is to query top documents for most 
relevant keywords and phrases – this is facilitated by T1; 3)The subset of interesting documents is used to query all related 
documents, using the DSI; and 4) Search terms are refined by way of SPSI (not shown here) – this takes us back to step 1. 

 
Key Title Document

D1 Annual Budget …

D2 Corporate
Earnings

…

D3 Marketing Reports …

… … …

---------------
---------------
---------------
---------------

----------
---------------
---------------
---------------
---------------

----------

---------------
---------------
---------------
---------------

----------

ID Keyword Colid … compDocid CompOc CompPid

K1 revenue 1 … 10,23,123 (1,4),(5,8),(1,34) 2,5,6,8,4,3

K2 growth 1 … 10,23,123 (1,5),(5,9),(1,34) 2,5,6,8,5,4

… … … … … …

DocID MatchedDocID

D1 (Annual Budget) D2 (Corporate 
Earnings)

D1 (Annual Budget) D7 (Finance Report)

D3 (Marketing Reports) D11 (Azure Strategy)

… …

ID DocID

T1 (revenue growth) D1 (Annual Budget)

T1 (revenue growth) D2 (Corporate Earnings)

T2 (Windows Azure) D3 (Marketing Reports)

… …

T1 (revenue growth) D7 (Finance Report)

… …

T2 (Windows Azure) D11 (Azure Strategy)

… …

ID Keyword

T1 revenue

T1 growth

T2 Windows

T2 Azure

… …

KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval

148



existing FTI. Additionally, the one pre-existing and 
three new indexes are created and maintained to 
directly support four very fundamental customer 
needs and interactions, which are described next. 
This makes the end-to-end system highly optimized, 
and ensures that all functionality and end outputs are 
directly motivated by customer requirements. 

2.1 Customer and Scenario Focused 
Design 

Customer focus groups reveal that the following is a 
common work flow of events and actions when 
perusing and researching a document corpus, as 
depicted in Figure 1: 1) First, the user, by now very 
accustomed to using search engines, starts by 
searching the corpus for an idea, a word or a phrase; 
2) Next, when the search returns a number of “hits” 
comprising enterprise documents, the user needs to 
quickly skim the top results for their content without 
reading the entire document – this is an important 
differentiator for the Enterprise user as opposed to 
the user of web search, because Enterprise 
documents may be hundreds of pages long, whereas 
web pages are short enough to be scanned rapidly; 3) 
When a small number of candidate documents have 
been identified, the user wishes to round off their 
search by querying for all documents that are related 
to those exemplars – without this the research would 
not be complete; and 4) Finally, the user may wish 
to re-submit a search by refining the search terms, 
typically by seeking out semantically related words 
or phrases. For instance, “Google” may translate into 
{search engine, relevance} by way of ordinary 
thesaurus lookup; however, a semantically related 
term for “Google”, when mined over a corpus of 
Microsoft documents, might result in “competition”. 

With the results of step 4, the user returns once 
more to step 1, and the process refines and repeats 
until the research is completed. The fundamentals of 
system design of Semantic Platform follow almost 
directly from the above work flow. Internally, we 
provide four physical indexes to support the above 
queries. 1) FTI, already available in past releases of 
SQL Server, enables searching of words and 
phrases; 2) TI summarizes each document into its 
top phrases; 3) DSI finds the top related documents 
to a given document; and 4) SPSI provides 
semantically related phrases to a given phrase. 

The family of mining algorithms that processes a 
large enterprise document corpus linearly and 
incrementally to produce the above four indexes, 
constitutes a significant advance in the state of art, 
because they may be applied to unify the search and 

semantic inference processing suites of a 
significantly large number of Enterprise products. 
With modifications to handle spam and account for 
web-specific relevance characteristics such as 
hyperlink count (page rank), they may become 
interesting for search engines. Our algorithms can 
provide substantial savings of capital expenditure as 
well as reduce document crawl- to-index 
availability, i.e. end-to-end throughput and latency 
of these products may be improved. 

In this paper, we present the Semantic Platform 
being released in the next version of SQL Server. 
This paper specifically describes the underlying 
mining algorithms of Semantic Platform, and 
provides a brief outline of the SQL extensions and 
new user experiences that are easy to build by 
querying these indexes. 

3 SEMANTIC MINING 
ALGORITHMS AND 
ARCHITECTURE 

In this section, we first show the system level block 
diagram, which shows how all the algorithmic 
pieces of IFTS and Semantic Platform fit, and how 
data flows through the tightly combined IFTS and 
Semantic Platform system end-to-end. Next, we will 
provide details on the three new Semantic mining 
algorithms. 
 

 
Figure 2: High level system architecture. 
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3.1 Top Level System Diagram 

Figure 2 shows how all the pieces fit at the system 
level. We start with a table in SQL database, where 
one column contains references (e.g. URIs) to actual 
documents. If the source of the data resides in a 
relational database, the primary key in the relational 
table or view goes in the main document index key 
field. Once the extraction process is created and 
launched by the user, the documents are crawled and 
parsed in a separate process called FDHost, which 
runs as a service, hosting third party DLLs such as 
IFilters and word breakers, which crack open the 
document formats, e.g. *.doc, *.pdf, and extract 
words and word sequences (ngrams). Shared 
memory is used for inter-process communications 
between the database server processes. 

Once the ngrams have been received back in the 
database server process, the TI and FTI are built 
and/or incremented concurrently. After the TI has 
been built, it is in turn used as the source to 
construct the DSI. After DSI is built or incremented, 
the whole process is complete. Thus, this provides a 
streamlined, single-pass and highly optimized 
combined architecture for IFTS and Semantic 
Platform in SQL Server. 

Due to the close integration of the Semantic 
mining platform with the pre-existing Full Text 
Search pipeline, the cost/effort to develop and 
maintain this architecture is moderate. We took 8 
months with a team of 6 Developers, 5 Testers and 1 
Program Manager to productize the system from 
start to finish. 

3.2 Mining the Tag Index 

The primary objective of mining the tag index (TI) is 
the need to summarize long enterprise documents 
(sometimes 200 – 500 pages long) into their top few 
key words and phrases. This is very important in 
order to support the search experience at the 
Enterprise, because the user might otherwise find 
search results, which are links to long documents, 
very time consuming to go through. Good tag 
indexing therefore directly results in productivity 
gains for the user of an Enterprise search based 
system such as IFTS. 

The TI mining algorithm is based on a LM and 
weight and threshold functions. TI is the output of 
the algorithm: given a document id, the TI returns a 
list of its top N key phrases, each with a weight 
signifying relative importance in the document. 

The data flowing into the TI mining algorithm is 
shown in the system block diagram above (Figure 

2). The TI mining algorithm is kept simple for 
scalability purposes, and is based on cross-entropy: 
we compare the word distributions from the LM 
(which contains expected distributions) to the word 
distribution from the current document. We score 
the ngrams based on how much more frequently 
they appear in a document, compared to their 
expected frequency as computed based on LM. This 
can be viewed as an approximation to Term 
Frequency Inverse Document Frequency (TFIDF) 
weighting, but we are replacing the inverse 
document frequency with the LM frequency. This 
enables our algorithm to be corpus independent, 
which is essential for Enterprise document corpuses 
that are getting new documents daily – we do not 
want to re-compute the TI every time this occurs. 
Also, our algorithm is not machine learning based, 
so there is no training phase, it can be used without 
the need of a good corpus representative sample data 
set for initial training. 

A caveat is that for short documents the word 
distributions are not very reliable. Therefore, we 
take into account document length as well. For all 
ngrams in any document that are considered as a 
possible tag, the algorithm requires: 1) Ngram 
frequency in the document; and 2) Ngram frequency 
in the language. This is either directly available in 
the LM, or is inferred from the LM, by treating 
words as i.i.d and adding their log probabilities. 

The pseudo-code for extracting keywords is 
provided below. 
ExtractTopNKeyPhrases(doc) 
{ 
  languageModel   

          SelectLanguageModel(doc); 
  candidates   

          Empty topN priority queue; 
  for each ((ngram, locations) in doc)      
  do 
    score = CrossEntropy(doc.GetSize(),  

       locations.Length, 
     // ngram frequency in doc 

    languageModel.Frequency(ngram) 
       ); 

    Candidates.Add(ngram, score); 
  end for 
  return topN candidates by descending  

score 
} 

 
ComputeCrossEntropy(docSize, 
docFrequency, 
LMFrequency)=(docFrequency/docSize) 

x(BASELog10(LMFrequency)) 
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3.3 Mining the Document Similarity 
Index 

The DSI mining algorithm works with a populated 
and stable TI as its input/data source. The end output 
of the algorithm is an index which can be queried by 
any given document id, and returns the top N other 
documents which share common highly ranked key 
phrases with the given document, with connection 
weights for each related document. Whereas 
incrementing the TI is straightforward: on getting 
new documents we simply add new rows to the TI, 
incrementing the DSI is somewhat complex, because 
it may include changing existing rows in the table. 
Therefore, we present both the basic DSI mining 
algorithm, and the incremental algorithm in this 
section. 

We only consider up to top K′ candidate 
documents that we consider for similarities (to avoid 
the O(N2) CPU issue), and only top K (where K ≤ 
K′) of those similarities will be stored. This allows 
us to avoid the O(N2) space issue. This greedy 
heuristic can be summarized as: given the target doc 
T, we have the list of keywords in descending order 
by their relative weight within T given by the TI; we 
start exploring the keywords list top-down and we 
find the documents where these keywords are also 
highly weighted; we stop when we have found K′ 
such documents, or we finished exploring the 
keywords list for doc T; those K′ documents are our 
candidates. 

Given two documents, doc1 and doc2, the TI 
gives us the list of tags and corresponding weights 
for each: 

Doc1: {(tag11, weight11), (tag12, weight12),…, 
(tag1k, weight1k)} 

Doc2: {(tag21, weight21), (tag22, weight22),…, 
(tag2k, weight2k)} 

We use cosine-similarity to compute the 
similarity between two documents, as shown below: ݁݊݅ݏ݋ܥ	ܿ݋݀)ݕݐ݅ݎ݈ܽ݅݉݅ܵଵ, =(ଶܿ݋݀ ,ଵܿ݋݀)ݐܿݑ݀݋ݎܲݐ݋ܦ (ଵܿ݋݀)݉ݎ݋ܰ(ଶܿ݋݀ ×  (ଶܿ݋݀)݉ݎ݋ܰ

where: ܿ݋݀)ݐܿݑ݀݋ݎܲݐ݋ܦଵ, (ଶܿ݋݀ =∑{ܹ݁݅݃ℎ݃ܽݐ)ݐ, (ଵܿ݋݀ ×ܹ݁݅݃ℎ݃ܽݐ)ݐ,   {(ଶܿ݋݀
for each tag that is common to doc1 and doc2, 

and 
2),()( ∑= ii doctagWeightdocNorm for each tag 

in doci. 
The pseudo-code for the DSI mining algorithm is 

provided below. 

ExtractTopKDocumentSimilarities(TagInde
x TI) 
{ 
  for each (unprocessed docId) do 

    
    // Step 1: Find top K’ candidates 
    topK’Candidates 
    =SelectSimCandidates(TI, docId); 

     
    // Step 2: Find similarities,  
    // relative to candidates 
    resultsHeap <-EmptyHeap(size=K); 
    for each (candidateId in topK’) do 
      similarity=CosineSimilarity(T,  

docId,candidateId); 
      resultsHeap.Add(candidateId,  

     similarity); 
    end for 

     
    // Step 3: Select top K results 
    for each  

  (candidateId,similarity) in 
  resultsHeap do 
     DSI.WriteRow(docId,candidateId,  

similarity); 
    end for 
  end for 
} 

 

The details of the SelectSimCandidates function 
are provided in pseudo-code. 
SelectSimCandidates(TI, docId) 
{ 
  resultSet = Empty(Map<int, double>); 
  for each (tag, weight1) in  

TI(docId) do  
    for each ((candidateId, weight)  

    in (select topK’ docs from  
 TI[tag]) do 

      if (candidateId ∉ resultSet) 
        resultSet.Add(candidateId,0.0); 
      end if 
        resultSet[candidateId] 

  += weight1*weight2;  
    end for 
  end for 
  return top K items in resultSet; 
} 

3.3.1 Incremental DSI Algorithm 

When the corpus evolves as new documents are 
added, and older documents are updated and deleted, 
it is not immediately obvious how to update the DSI 
such that it remains “fresh”, as well as consistent 
with the TI and FTI, without having to re-build it 
from scratch each time, as that would be very costly.  

We have designed a scalable approach to this 
problem, which builds upon the candidate selection 
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heuristic that is at the core of our DSI mining 
algorithm (see pseudo-code segments above).  

For the documents in the update batch, (doc1,…, 
docN), we first extract and store the tags in the Tag 
Index (TI). Then we compute document similarities 
for each of doc1,…,docN. 

Let us detail the process for any one document in 
this batch, docj. We apply the standard DSI 
algorithm for docj and find the top K′ candidates for 
it: cand1,…,candK′, where each of the K′ candidates 
can either be one of the documents already indexed 
in previous batches, or it can be a document from the 
same batch as docj. 

For the incremental step, we do the following for 
each candj in top K′: 1) If candj is a document in the 
current batch, do nothing special (since its 
similarities will be up to date); 2) If candj is a 
document from a previous batch, compare 
Similarity(docj, candj) with the weakest similarity 
among the top-K similarities stored for candj; if 
there is a document X such as Similarity(candj, X) < 
Similarity(docj, candj), then we update the stored top 
K similarities for candj, by replacing 
Similarity(candj, X) with Similarity(docj, candj). 

We will discuss the cost and accuracy 
implications of the incremental algorithm in the 
section on Experimental Results. 

3.4 Mining the Semantic Phrase 
Similarity Index (Graph) 

N.B: This index is not being shipped in the next 
version of SQL Server, but in a subsequent release 
to be determined by Microsoft. 

In this section we first describe the top level 
objectives of the information we are trying to mine, 
to clarify for the reader, fundamental differences 
with related approaches like (Hammouda, 2004). 
Whereas the end objective in (Hammouda, 2004) is 
to infer document similarity, our objective is to infer 
a phrase similarity graph that is approximately 
closed under transitive closure, and has near-linear 
time computational requirement. 

3.4.1 Top Level Objective: Semantic 
Thesaurus 

The overall objective of mining the semantic phrase 
similarity index (SPSI) is to derive a semantic 
thesaurus which embodies the inferred semantic 
space over phrases used at the Enterprise. 

For example, given a Microsoft corpus of 
documents, we would like “Google” to translate into 
things like “search engine”, “ad revenue”, etc., that 

we would normally get from a Thesaurus lookup, 
but additionally, also get “competition”. In case the 
corpus is mainly discussing the competition between 
these companies, we want “competition” to be 
heavily weighted. We also wish to discover so-
called latent relationships (Deerwester, 1988), 
between words and phrases, such that if A  B with 
a high weight and B  C with a high weight, then I 
wish to infer the A  C relationship. Most 
importantly, we wish to construct the mining 
algorithm to scale linearly, be incremental, and 
possible to integrate tightly into the overall FTI and 
Semantic Platform architecture outlined in Section 
3.1. 

 
Figure 3: SPSI mining algorithm. 

3.4.2 Eight Stage Algorithm 

The SPSI algorithm consists of eight stages, 
numbered S1 – S8 in Figure 3. Corresponding to 
each stage is a data structure abstraction, as shown 
in the figure. 

To facilitate understanding this algorithm, we 
will re-use a worked example from (Zamir, 1998). 
Consider that the document corpus we are working 
with contains the following three documents, with 
ids: D1, D2 and D3. 

D1: “Cat ate cheese” 
D2: “Mouse ate cheese too” 
D3: “Cat ate mouse too” 
In S1, which does tokenization and 

lemmatization into base forms, we transform the 
corpus thus: 

D1: “cat eat cheese” 
D2: “mouse eat cheese too” 
D3: “cat eat mouse too” 
In S2 we simply substitute LM ids for each word 

(or ngram), so that the rest of the algorithm works 
with integers. This makes the processing more 
efficient than working with strings. However, for 
ease of explanation, we will revert back to using 
strings for the remainder of this worked example. 

D1: 2022, 788, 4077 
D2: 16788, 788, 4077, 345 
D3: 2022, 788, 16788, 345 
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In S3, where we use an LM to filter out the low 
entropy words in the language, we end up with the 
following: 

D1: “cat eat cheese” 
D2: “mouse eat cheese too” 
D3: “cat eat mouse too” 
We pre-process the text using LMs to derive 

entropy sliced pyramids (ESP). The top levels of 
these pyramids contain the most salient semantic 
entities. Lower levels of the ESP contain 
progressively more terms, and the lowest level 
contains everything and can be used for full text 
search. ESP essentially gives us a multi-resolution 
decomposition of the data, and imposes the 
priority/scale constraints that the top levels of the 
pyramid contain both the most semantically valuable 
as well as least quantity of data, which means we 
can “skim off the top” and compute only the most 
salient information, entities and relationships faster 
than the rest. This mechanism enables us to deal 
very effectively with information at scale. Figure 4 
shows an example of using an ESP on the incoming 
text (presumably from a resume): “Skill set: I have 
used C++ and MATLAB”. 

 
Figure 4: Entropy Sliced Pyramid. Each level contains 
terms at or above the entropy threshold for that level. 

In S4, we create the inverted ngram index, as 
shown below: 

“cat”: {D1, D3} 
“cheese”: {D1, D2} 
“mouse”: {D2, D3} 
“cat cheese”: {D1} 
“mouse cheese”: {D2} 
“cat mouse”: {D3} 
Here it’s worth mentioning that we only used 1, 

2, and 3-grams. There is a big space/disk cost to 
using high order ngrams, and we repeatedly found 
evidence of diminishing returns for ngrams longer 
than 3 in a number of large (Enterprise) corpuses. 
This is shown in Figure 5. 

In S5 we filter out sets with cardinality less than 
some threshold. For example, in our running 
example, we may filter out the sets: “cat cheese”, 
“mouse cheese” and “cat mouse” because they are 
all singletons. Sometimes singleton sets are indicative 

 
Figure 5: Ngram node length histogram mined from a 
3000 doc corpus. 

of noise, and they are rarely useful in linking 
semantically similar content. 

In S6, we create weighted adjacency lists, using 

the Jaccard metric: ∪
∩

||

||
),(

21

21
21

DD

DD
DDJ = . This 

provides a notion of semantic nearness between any 
two ngrams, as the count of documents they are both 
present, over those only one is present. In our 
running example, the pairwise Jaccard metric 
applied to the surviving ngrams produces the 
following output, which is an Adjacency Matrix: 

cat: {(cheese, 0.33), (mouse, 0.33), (cat cheese, 
0.5), (cat mouse, 0.5)} 

cheese: {(cat, 0.33), (mouse, 0.33), (cat cheese, 
0.5), (mouse cheese, 0.5)} 

mouse: {(cat, 0.33), (cheese, 0.33), (mouse 
cheese, 0.5), (cat mouse, 0.5)} 

cat cheese: {(cat, 0.5), (cheese, 0.5)} 
mouse cheese: {(cheese, 0.5), (mouse, 0.5)} 
cat mouse: {(cat, 0.5), {mouse, 0.5)} 
For S6, we compute the Jaccard graph that 

relates all pairs of ngram nodes incrementally, with 
each incoming document, as described below. 

Induction Hypothesis: Graph is Jaccard complete 
(i.e. all pairs have distance given by the Jaccard 
metric) after we have seen the (i-1)th document. 

Induction Step: We only partially update the 
graph to change numerators and denominators of 
only the “active ngrams” – these are the ngrams that 
occur in the ith document. After the update step the 
graph is once more Jaccard complete. 

In the following we outline the steps of the fast 
Jaccard update algorithm on receiving the ith 
document. 

1. Represent the incoming document as a set of 
ngrams: Doc(i) = {ngj1, ngj2, …, ngjn}; 

2. Mark previously unseen and previously seen 
ngrams, creating the set partitions: 

∪ )()()( iUnseeniSeeniDoc = ; 
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3. Insert the unseen set into the Adjacency 
Matrix, the unseen rows become: Doc(i), all 
numerators and denominators = 1; 

4. For each ngram in the Seen set, append the 
Unseen set, and initialize all numerator = 
denominator = 1; 

5. For each ngram in Seen set, update the old row 
with denominator++; and if the old word is in 
Doc(i) then numerator++. 

6. In order to guarantee strictly linear behaviour 
wrt Jaccard updates, we reuse the incremental 
update regime detailed in the context of DSI 
updates in section 3.3.1. Namely, we maintain 
a maximum of K’ candidates in each word’s 
adjacency list; these are used to “bubble up” 
the final K top relationships for each word. K’ 
> K. 

Step S7 is actually an optimization/pre-
processing step to speed up S8, and so we first 
describe S8, which is the transitive closure over the 
graph obtained from S6. 

At the output of S6, we have a pairwise 
connected weighted graph represented by the 
adjacency matrix. From this it is possible to compute 
connected components and semantic clusters and 
neighbourhoods. Indeed, that is what we do in S7. 
However, in order to capture the latent semantic 
relationships, it is necessary to consider transitive 
relationships between ngram nodes. If we fail to do 
that, the semantic inference available from the entire 
process tends to be locked into “vocabulary silos”. 

We compute the transitive closure over this 
graph using the classic Floyd-Warshall algorithm, by 
defining the relaxation step to be the maximum over 
edge weight between vertices i, j, and intermediate 
vertex k: e(i, k) x e(k, j). This exposes the latent 
semantic relationships, and gives us functional 
equivalence with LSI. The end result is an entity 
relatedness graph with edge weights representing 
relationship strengths between any pair of vertices. 
Note that our edge weights are symmetrical, and so 
we only need to deal with the upper triangular half 
of the adjacency matrix, discounting diagonal entries 
(each node is trivially related to itself). 

Theorem: Given a Graph G, defining the 
relaxation step on an edge connecting vertices Vi and 
Vj as: e(i, j) = Max{e(i, j), e(i, k) x e(k, j)} where the 
base edge weights represent Jaccard similarity, is 
necessary and sufficient to induce transitive closure 
over G, exposing latent semantic relationships. 

Proof: If Jaccard similarity is considered as an 
approximation of probability that nodes Vi and Vj are 
related, and if the relationship between any two 

(non-identical) pairs of vertices (e.g. {Vi, Vj} and 
{Vi, Vk}) is independent, then their joint probability 
is the result of multiplying independent probabilities. 
But this is the same as multiplying edge weights 
stemming from Jaccard similarity. 

To complete the running example, here are the 
outputs of the Transitive Closure step. Latent 
relationships that emerge after transitive closure are 
highlighted. 

cat: {(cheese, 0.33), (mouse, 0.33), (cat cheese, 
0.5), (cat mouse, 0.5), (mouse cheese, 0.165)} 

cheese: {(cat, 0.33), (mouse, 0.33), (cat cheese, 
0.5), (mouse cheese, 0.5), (cat mouse, 0.165)} 
mouse: {(cat, 0.33), (cheese, 0.33), (mouse 

cheese, 0.5), (cat mouse, 0.5), (cat cheese, 
0.165)} 
cat cheese: {(cat, 0.5), (cheese, 0.5), (mouse, 

0.165), (mouse cheese, 0.25), (cat mouse, 
0.25)} 
mouse cheese: {(cheese, 0.5), (mouse, 0.5), 

(cat, 0.165), (cat cheese, 0.25), (cat mouse, 
0.25)} 

cat mouse: {(cat, 0.5), {mouse, 0.5), (cheese, 
0.165), (cat cheese, 0.25), (mouse cheese, 0.25)} 

3.4.3 Transitive Closure Optimizations 

Transitive Closure on a graph is an expensive O(N3) 
operation. We outline a series of optimizations that 
reduce the end-to-end complexity.  

First, we enforce sparseness on the graph from 
S6 by clamping weights, e(i,j), that are less than a 
sparseness threshold, T, to zero: If (e(i, j) < T e(i, j)) 
= 0, then e(i,j) = 0.  

We next run connected components algorithm on 
the sparse graph. Connected components is O(N). 
Once the M components are identified, the transitive 
closure on the entire graph reduces to running 
transitive closure on the M components. Thus, we 
transform the overall complexity from O(N3) to 

 
)(

0

3∑
=

M

i
inO

. 
A spin-off data structure of connected 

components is the Component Index, which is 
actually a hierarchy of embedded sub-components, 
corresponding to different values of sparseness 
threshold. This enables us to work with components 
and clusters later on. 

We now state without formal proof, a conjecture 
based on substantive empirical evidence, that 
actually results in completely eliminating the 
expensive transitive closure operation for large 
corpuses. Either transitive closure is necessary and 
the document set is small, in which case it is cheap 
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to compute; or transitive closure is asymptotically 
unnecessary (and can therefore be entirely 
eliminated), beyond filling in the pair-wise Jaccard 
similarities, when the document set is large. 

Intuitive Explanation: Consider documents 
relating Obama and the US presidency. These are 
likely to be many. Consider documents relating 
Obama and basketball. These are likely to be few. In 
a small collection there may not be any single 
document commenting on relationships between the 
office of the President of USA and basketball. 
However, if a sufficiently large document set is 
constructed, then there is a high chance that some 
document does talk about how presidents relate to 
the game of basketball. 

This intuitively explains why the net contribution 
of transitive closure, or latent relationships, in 
general, may be expected to diminish as we 
approach very large document sets. 

Experimental Evidence: We now present the 
experimental evidence (Figure 6) which shows that 
the contribution of the weight deltas due to the 
transitive closure step seems to follow roughly an 
exponential decay curve as the corpus size increases. 
We have found that this generalizes over a variety of 
different Enterprise (e.g. SharePoint design 
document repository) and academic corpuses (e.g. 
New England Journal of Medicine). 

 
Figure 6: Contribution of transitive closure diminishes for 
large corpuses. 

4 EXPERIMENTAL RESULTS 

Traditional accuracy metrics for full text search and 
web search are Precision and Recall (Baeza-Yates, 
1999). Whereas the precision of semantic search is 
good, the recall is expected to be somewhat poor in 
comparison to full text search products, because we 
follow transitive links to other documents. 

For our tagging experiment, we used the social 
tagging dataset culled from delicious that  was  used 

 in (Jiang, 2009). There are two versions of the TI 
algorithm that we tested - the normal algorithm and 
a filtered version (Filtered TI). The filtered version 
takes the keywords produced by the TI and then 
filters out keywords that do not appear in the 
document a minimum number of times normalized 
by the document length. We compare our results to 
corpus dependent machine learning methods: KEA 
(Witten, 1999), Linear Support Vector Machine 
(SVM) and Ranking Support Vector Machine 
(Ranking SVM) (Jiang, 2009). We used the same 
parameter settings, test/training splits, etc. as (Jiang, 
2009), for consistency. We also compare our results 
to the standard Term Frequency (TF) and TFIDF 
methods. Table 1 shows our results based on the 
Precision at 5 (P @ 5) and Precision at 10 (P @ 10) 
metrics. 

The results are quite promising. Without 
filtering, TI produces results that are approximate to 
TFIDF, but in a corpus independent way. Once we 
filter TI, we achieve results that surpass TF and 
TFIDF and, in fact, are closing in on KEA. The 
advantage is that our method scales linearly. One 
interesting result is that TF performed better than 
TFIDF, which could be due to the small corpus size 
(600). Overall, the results show that TI provides a 
solid foundation upon which DSI can be built. 

Table 1: Precision results for our algorithm (TI and 
Filtered TI) compared to others. 

P @ 5 P @ 10 

TI 0.289 0.221 

TFIDF 0.295 0.23 

TF 0.34 0.267 

Filtered TI 0.38 0.27 

KEA 0.437 0.31 

SVM 0.469 0.323 

Ranking SVM 0.495 0.349 
 
For document similarity precision performance, 

we constructed a corpus of 2500 documents scraped 
from Wikipedia. The corpus consisted of 25 topics, 
each with 100 documents each. Sample topics 
include “american actors”, “american singers”, and 
“national football league players”. Note, some of the 
documents belonged in two categories, such as an 
actor that was also a singer. This negatively affects 
precision results for all methods including DSI. To 
test the precision, we took a single document from 
each of the topics and used it as the query document, 
and then we obtained the top 10 most similar 
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documents. Then precision numbers at 1, 3, 5, and 
10 were calculated. We compared our results to the 
traditional Cosine similarity measure (CosSim) 
based on TFIDF (Baeza-Yates, 1999). 

The results in Table 2 show that DSI provides a 
similar precision level to CosSim, but does so in 
linear time instead of in O(N2) time, and is 
completely corpus independent, unlike CosSim.  
This is a huge win for customers whose workloads 
are in the millions of documents, anything other than 
linear will simply not be feasible at such scale. 

Table 2: Precision results for DSI and CosSim. 

 P @ 1 P @ 3 P @ 5 P @ 10 
DSI 0.8 0.8 0.79 0.78 

CosSim 0.8 0.82 0.83 0.82 

Figure 7 shows how FTI, TI and DSI mining 
stack up in terms of end-to-end execution time (i.e. 
sum total of computing all three indexes) on a real 
customer workload sampled at 200k document 
increments, with an average sample size of 40KB 
per document in plain text format. The test machine 
had 32GB of RAM and a DOP (degree of 
parallelism) of 32. The results clearly show linear 
scaling. 

 
Figure 7: Total execution time (sec.) vs. Docs mined. 

4.1 Incremental DSI Algorithm 
Performance 

As the corpus evolves over time (new documents are 
added, and old ones are updated), the incremental 
algorithm keeps the index fresh in an efficient 
manner. However, there are a few expensive 
operations involved in “back updates”. These are, in 
increasing order of cost: 1) Lookup to find if candj is 
in the new (incremental) batch or not. For this we 
can use an in-memory hash table; 2) Lookup to find 
the weakest of the top K stored similarities for candj; 
and 3) Update (or delete followed by insert) in case 

we need to update the weakest similarity for candj. 
This is the most expensive operation. 

In Figure 8, we report on the accuracy and I/O 
cost for various corpus sizes, from 1000 to ~500,000 
documents (number of docs is on the X-axis). 

 
Figure 8: Cost of incremental DSI. 

One conclusion from the above analysis is that 
the “average similarity values” (top left plot) shows 
that the DSI approach gives quite good accuracy: we 
will not have 100% accuracy (compared to some 
“perfect similarity oracle”), but the fact that top-1 
similarities, especially for large corpus sizes, are 
close to 1 means that strong similarities are easily 
identified; also, average top-10 similarities grow 
nicely. The reason that those numbers (both for top-
1 and top-10) are lower for smaller size corpuses is 
due to the fact that the lower the corpus size, the 
lower the probability to find similar documents. 

Secondly, the total time in milliseconds (lower-
right) graph shows that the runtime is linear: as we 
double the document set size, the runtime roughly 
doubles. Thirdly, the “I/O cost of incremental 
updates” (upper-right) graph is similar to the 
TotalTimeMillis one, in the sense that the number of 
back-lookups and back-updates doubles when we 
double the corpus size. 

Another piece of learning from the above 
analysis is that accuracy can benefit from the same 
approach (back-updates) even for in-batch 
documents. The reason is that back-updates act to 
boost accuracy, and give some documents that may 
have been missed by the candidate selection 
heuristic a second chance. Given the high overhead 
in I/O cost, we should be cautious to use this in all 
cases, and we recommend to only using it for batch 
updates, where this is absolutely needed, and to  let 
the non-incremental case run as fast as possible. 
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The semantic mining algorithms have been 
distributed in the form of SQL Server’s community 
tech preview (CTP) bits, and have been well 
received, with one Microsoft internal and one 
external customer showing intent to adopt. 

5 APPLICATIONS 

With the search user experience, we have been used 
to a document-centric rather than concept-centric 
navigation of information. The overall 
search/browse experience is somewhat broken at the 
Enterprise (which is the primary concern of SQL 
Server’s user base), because Enterprise documents 
could be hundreds of pages long, and there may be 
millions of documents in the repository, e.g. 
SharePoint. People simply don’t have the time to 
scan so much information and ultimately navigate to 
the exact point of interest. 

Based on mining the Phrase Similarity Index 
(Section 3.4), we propose to enable a set of concept-
centric information navigation experiences (Figure 
9). This enables the user to browse a document 
collection by following links through concepts, 
rather than through document names or a sequence 
of search queries – especially useful in large 
document collections where individual documents 
are large, e.g. at the Enterprise. In Figure 10, we 
show how the semantic graph may be used to 
enhance the Windows Explorer user experience. 
 

 
Figure 9: Exploring a concept graph. 

 
Figure 10: Exploring mined concepts in a file system. 
When a concept is browsed on the left, corresponding files 
are highlighted on the right. 

6 CONCLUSIONS 

We have described the semantic mining algorithms 
that lie at the core of Semantic Platform, which is 
being released in the next version of SQL Server, 
and shown that they scale linearly with large 
document corpuses. The combination of the four 
indexes facilitates the process and work flow of 
browsing, searching and researching information at 
the Enterprise, where documents can be large 
compared to web pages. It also enables new and 
intuitive user experiences along the lines of 
browsing concepts that are contained in documents 
instead of the documents themselves, e.g. using 
filenames. 

Future work includes keyword precision 
improvements for the TI by utilizing additional 
corpus independent features such as first occurrence 
and phrase distribution (Jiang, 2009). Additionally, 
for the DSI, exploring different candidate document 
selection strategies and document similarity 
functions are fruitful avenues of research that could 
potentially yield gains in performance and precision. 
We also plan to expose more tuning knobs (e.g. K 
and K′ in Section 3.3) to better control the degree of 
completeness of DSI results, and/or to adapt them as 
the mining proceeds. Adaptive language modelling 
is yet another promising future direction when 
mining Enterprise document corpuses. 
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