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Abstract:  This paper presents the development of robust controllers for piezoelectric actuated plates, in the well 
known framework of Riccati equations. The treatment of the modeling uncertainties is based on two 
approaches: robust H∞ synthesis and LQG/LTR synthesis. The basic laboratory architecture for control 
laws validation is presented, with a cantilevered plate equipped with MFC actuators and strain gage sensors 
serving as paradigm of the smart structures. The experimental results are finally shown to testify the effect 
of the active control. 

1 INTRODUCTION 

Robust control, founded in the 1980’s, focuses on 
the development of controllers that can maintain 
good performance while parameters of controlled 
plants incur bounded deviations. Many robust 
control schemes have been applied to the active 
control of vibration and noise, as well as smart 
structural systems. Yoshi and Kelkar (1998) 
combined LQG type synthesis with robustness and 
performance analysis to design a vibration controller 
for flexible aeroelastic modes of the supersonic 
aircraft. H∞  control for vibration suppression of a 
plate was used by Kar et al., (2000) and Yaman et 
al., (2002), where the first three modes were 
considered in the model and the remaining modes 
were treated as uncertainty. The present paper 
continues the previous works of the authors (I. Ursu 
and F. Ursu, 2002); Iorga et al. 2008, 2009), aiming 
to offer a unitary methodology for robust control of 
piezoelectric smart structures. The methodology is 
validated by laboratory tests. Only few similar 
works are reported in the literature of the field. 

The paper is structured as follows. In Section 2, 
the mathematical model of the smart structure is 
presented. Based on the mathematical model, 
Section 3 details three levels of H∞  control 
synthesis. As comparison term for robust H∞ control 
synthesis, Section 4 resumes a simple and efficient 

procedure of LQG/LTR control design. In Section 5, 
we present some experimental results on an 
elementary smart structure, a cantilever plate. The 
paper ends with some concluding remarks. 

2 MATHEMATICAL MODELING 
OF THE SMART STRUCTURE 

A plate is defined as a structure whose thickness is 
small as compared with the other two dimensions. 
The smart plate is modeled as a composite laminated 
plate based on the Kirchoff hypothesis. The 
actuators are modeled in the framework of the linear 
piezoelectric theory. The system is discretized by the 
Rayleigh-Ritz method; a pseudo-analytical model is 
thus obtained. An approximate mathematical model 
can be also obtained by using the finite element 
method (FEM). In practice, finite models are 
considered by limiting the number of degrees of 
freedom to one deemed representative during the 
structural modeling phase, i.e. limiting the number 
of modes in the series expansion of the assumed 
modes method or through choosing a finite number 
of nodes in an FEM discretization. Assuming 
viscous damping, the structure equations of motion 
can then be written 

pz+ + = +Mq Cq Kq B u f  (1)
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where M, C, K are the mass, structural damping and 
stiffness matrices, respectively, while q, u and f are 
the generalized coordinates, control inputs and 
generalized loads. The matrix Bpz contains the 
piezoelectric influence coefficients. Consider now 
the transformation to modal coordinates 

( ) ( )t t=q Vη  (2)

where V is the matrix of normalized eigenvectors 

iv  satisfying ( ) , 1, ...,i i m=  =   2
iK -ω M v 0 . Because 

T =V MV I , the equations of motion become 

pz+ + = +η Cη Kη B u f  (3)

where , ,T T pz T pz= = =C V CV K V KV B V B . The 
modal damping and stiffness matrices C  and K are 
diagonal but, in general, the modal equations of 
motion (3) remain coupled through the components 
of matrix pzB . 
 For the control synthesis, the system must be 
written as a system of first order ordinary 
differential equations. Denote by x the state 
vector [ ]T=x η η . Then from equation (3) we obtain 
the state equations: 

1 2= + +x Ax B f B u  (4)

where the system matrices are: 

1 2, , pz

⎡ ⎤⎡ ⎤ ⎡ ⎤
= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

00 I 0
A B B

K C I B
 (5)

The system output equations are grouped in 
regulated variables, which characterize the 
objectives to be attained through control and 
measured variables which represent directly the 
sensor output. The measurement equation is 

2 21 22= + +y C x D D uμ  (6)

where y is the measured sensor output vector, μ  is 
the vector of measurement (sensor) noise, and the 
specific form of the measurement matrices C2, D21 
and D22 depends on the type of measurement 
considered. Optical displacement measurements, 
acceleration measurements, strain measurements – 
either by using strain gages, or piezoelectric bonded 
patches – are reported in the literature. When 
measuring quantities such as displacements or 
strains, the exogenous perturbation f  and the 
control inputs u have no direct effect on the 
measured outputs. Then  

22D = 0  (7)

In its most general form, the output equation for 
the regulated variables z can be hereby written 

1= + +11 12z C x D f D u  (8)

thus relating the regulated output to the system state 
as well as exogenous perturbations and control 
inputs. The choice most often encountered in the 
literature of the field for the regulated outputs is to 
use directly the sensor measurements weighted in 
the frequency domain. Alternatively, other quantities 
representative to the system response can be 
employed. For example, the amplitudes of the modal 
coordinates and velocities; in this case, the regulated 
variables vector is 

1 2

T
1 1 1,..., , ,..., , ,...,

actm m Nu u⎡ ⎤= η η η η⎣ ⎦z  (9)

For this case, the output reflection of the actuator 
inputs is achieved through the matrix D12 whose first 
rows are null since the control input u has no direct 
effect on the modal coordinates and velocities. Since 
the regulated output contains modal coordinates and 
velocities and the piezoelectric actuator inputs, the 
perturbations f  have no direct effect on the 
regulated variables – therefore the matrix D11 will 
simply be a null matrix. Thus 

[ ]11 12,
⎡ ⎤

=  = ⎢ ⎥
⎣ ⎦

0
D 0 D

I
 (10) 

3 H∞  CONTROL SYNTHESIS 

3.1 The Case of Static Weights 

We consider the following basic equations of the 
smart structure system as processed from the 
equations (4), (6), (8), by taking into account the 
logistics defining the experimental specimen 
presented in Figures 1, 2 

:n n

u
y D u

u

f y +

= + +
= + +

= + +

⎡ ⎤
∈  ∈  = , ∈  ∈⎢ ⎥

μ⎣ ⎦

1 1 2 2

2 21 1 22 2

1 11 1 12 2

2 1
1 1

x Ax B u B
C x D u

z C x D u D

x R ,u R ,u R, z R
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n nn
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n D
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×

×

∈  ∈  

⎡ ⎤⎡ρ ⎤
= = ⎢ ⎥⎢ ⎥

ρ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

1
2 1

x 2
1 11

u

C R ,C R

diag C 0
C

0

 

(11)
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Figure 1: Sketch of the basic smart structure considered 
for this study – the cantilevered aluminum plate with 
bonded MFC actuators. Legend: 1MFC – the Macro Fiber 
Composite (MFC) active control actuator; 2MFC – MFC 
actuator for disturbance generation; 1, 1, 2, 4 – strain 
gages. 

The realization of the transfer matrix ( )G s  is 
transcribed in the usual form 

( )

( )

⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎣ ⎦

=

1 2

1 11 12

2 21 22
-1

A B B A B
G s = C D D := =C D

C D D

C sI - A B + D

 
(12)

These equations characterize a SISO (Single-Input-
Single-Output) system, for which an H∞  optimal 
control problem is posed: find a controller ( )K s  that 
will minimize the peak value of the frequency 
response of ( )1zu sT , the matrix-valued closed-loop 
transfer function from the system input to its output 
(see Fig. 4). In other words, the question is to find a 
controller ( )K s  

( ) ( ): ∞

⎡ ⎤
⎢ ⎥=⎢ ⎥⎣ ⎦

c c

c c

A B
K s = C K D  

2u
c c c c

c c c

y
D y

= +

= +

x A x B
C x

 (13) 

that internally stabilizes the closed-loop system and 
that, given 0γ > , satisfies the condition 

( )1 1
R

: supzu zu j
∞

ω∈

⎡ ⎤= σ ω < γ⎣ ⎦T T  
(14) 

 
Figure 2: Photo of the cantilever aluminum plate specimen 
performed for active control laws validation. 

A justification for the optimal H∞  control 
resides in the minimax nature of the problem, with 
the argument that minimizing the “peak” of the 
transfer 1u z→  necessarily renders the magnitude 
of 

1zuT  small at all frequencies. In other words, 

minimizing the H∞ -norm of a transfer function is 
equivalent to minimizing the energy in the output 
signal due to the inputs with the worst possible 
frequency distribution. This improvement of the 
“worst-case scenario” has a direct correspondent in 
the active vibration control problem and seems 
particularly attractive for light structures with 
embedded piezoelectric actuators.  

Before H∞  control synthesis can be employed, 
it is necessary to verify that the open-loop plant 
satisfies several assumptions (Zhou et al., 1996). 
Specific desired loop gain are (Postletwhite and 
Skogestad, 1993): a) for perturbation rejection 
make ( )σ KG  large and b) for noise attenuation 
make ( )σ KG small (Figure 3). The specific low 
frequency lω  and high frequency hω depend on the 
specific applications.  
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Figure 3: The H∞ control paradigm. 

 
Figure 4: Block diagram of the augmented system. Dynamic weights. 

We note that the observer-based H∞  controller (12) 
is a dynamic one, even though it is based on static 
weights, see the matrices .1 12 21C , D , D  

3.2 Augmented System: Dynamic 
Weighting Functions 

The system inputs and outputs can be modified in 
order to specify certain performance objectives to be 
met by the closed-loop system, and to account for 
the relative magnitude of the signals (Zhou et al., 
1996). Consider the system of equations (11) with 
weighted regulated outputs as shown in Figure 6, 
where the loop is closed by the controller K , yet to 
be determined. We denote by ηW  the diagonal 
transfer matrix of first-order low pass filter, 
weighting the modal coordinates in the regulated 
outputs vector and by actW the transfer matrix of 
second order band-stop filters, or first-order high-

pass filters, weighting on the piezoelectric control 
voltages 

, 1, , ,1 1
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i i
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η =  =  
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A B A B
 W , W =C D C D

 

(15)

The idea is to place greater emphasis on suppressing 
the response due to low-frequency excitation while 
avoiding a response to small high-frequency 
components which will excite faster modes. Further 
on, the piezo actuator signals are subject to identical 
weighting functions Wact chosen such that at 

G 

K 

z 

y u2 

u1 

G 

ηW  

actW  

K μ

w 

2u

1z  

2z

1e  

2e  
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undesired very low and at high frequencies, herein, 
the weight magnitude is increased, thus reducing the 
controller response, while in the target bandwidth it 
is decreased. Thus, partitioning the matrix 

TT⎡ ⎤⎣ ⎦1 11C := C 0 , we can write the augmented system 

(Figure 4) 

,

u

 

=

x = A x + B z = A x + B C x x =η η η η 1 η n n 11 act

A x +B z =A x +Bact act act 2 act act act 2
 

,

,u y

 

=

e = C x + D z = C x + D C x e =1 η η η 1 η η η 11 2

C x + D = C x + D wact act act 2 2 21
 

2

u
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u

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎣ ⎦ ⎣ ⎦
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥+ ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

η η 11 η η

act act

1 2

1 2

act

η 11 η1

2 act η

2 act

1 act

21

x A 0 0 x
x = B C A 0 x +

x 0 0 0 x

B B
0 u + 0
0 B

D C C 0e x
e = 0 0 C x +

C 0 0 x

0 0
0 u + D

D 0

 

(16)

4 LQG/LTR CONTROL 
SYNTHESIS 

Consider Single-Input-Single-output (SISO) system. 
The LQG (Linear Quadratic Gaussian) (Kalman, 
1960) control synthesis concerns the system  

1 2u= + +x Ax B f B , 1=z C x , 2 21y D= + μC x  (17)

and a stochastic framework which assumes the 
exogenous signals f  and μ  display the 
characteristics of white noise signals. The goal is to 
find a control u  such that the system is stabilized 
and the control minimizes the cost function  

( ) ( ) ( )
( ){ }1

limLQG
T

J E u dtuRT→∞
= ⎡ ⎤ ⎡ ⎤⎡ ⎤⎣ ⎦ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦∫

T T
0

Q 0 x tx t t t0  

ρRT
1 J 1Q = C Q C ,  =  

(18)

where JQ  and ρ  are weights ( ρ is herein scalar). 
The solution is given by the classical Kalman 
synthesis. The state estimator has the form 

( )ˆ ˆ ˆy2 f 2x = Ax + B u + K - C x  (19)

The LQG control synthesis concerns the solving of 
the decoupled algebraic Riccati equations  

μ

R
0f

−

−
−
− =

T 1 T T
2 2 1 J 1

T T 1 T
2 2 1 1

A P + PA PB B P + C Q C = 0
AS + SA SC Q C S + B Q B (20)

where fQ  and Qμ  are the matrices describing the 
noise characteristics. The control u, the controller 
gain, cK , the filter gain, fK , and the filter matrix, 
respectively, are defined by,  

( ) ( )ˆu
− −

−

− −

c
1 T T 1

c 2 f 2 f

0 2 c f 2

t = K x t

K = R B P ,  K = SC Q
 A = A B K K C

  (21)

Using the state-estimator and the control law, the 
closed loop system becomes  

( )
( ) ( )21

ˆ

ˆ ˆμD 
1 2 c

f 2 f 0

x(t) = Ax(t) + B f(t) - B K x t

x t = K C x(t) + K (t) + A x t
 (22)

It is well known that the Linear Quadratic 
Regulator (LQR) controller has good robustness 
properties, but these properties are usually lost when 
the LQR is used in conjunction with the Kalman 
filter (Doyle, 1978). In the following, the LQG/LTR 
(Loop Transfer Recovery) procedure (Stein and 
Athans, 1987) will be applied to recover the lost 
robustness of the LQR system. The filter gain 
synthesis will be performed such that 

12D , → 0 1 2B = B  (23)
and also, such that  

( ) ( )j j≅LQG LQRL ω L ω  (24)

in a certain range, as large as possible [ ]max0,ω∈  ω , 
where ( )j sω =   

( ) ( )
( )

( ) ( )

−

−

−

− − − −

−

− −

1
LQG c f 2 2 c

1
f 2 2

1
LQR c 2

L s = K sI A K C B K

K C sI A B

 L s = K sI A B

 (25)

Thus, the filter gain fK  will be tuned so that the 
closed-loop LQG/LTR system (having the open loop 
matrix LQGL ) recovers internal stability and some of 
the robustness properties (gain and phase margins) 
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of the LQR design (with open loop matrix LQRL ). 
Moreover, standard statements similar to those 
already enunciated can be added: a) for perturbation 
rejection ( )σ LQGL is to be designed large and b) for 
noise attenuation ( )σ LQGL is to be designed small.  
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Figure 5: Results on cantilever plate process identification. 

5 EXPERIMENTAL RESULTS ON 
AN ELEMENTARY SMART 
STRUCTURE 

To test the proposed smart structures control 
strategies, a 200×500×1.25 mm cantilever aluminum 
plate (Figures 1, 2) is considered. The test rig 
contains 1) the cantilever aluminum plate on which 
the strain gages (SGD-5/350-LY11, Omega 
Engineering) and MFC (M8557P1MFC, Smart 
Materials) actuators are bonded, 2) the signal 
conditioners (OM5-WBS-3-C, Omega Engineering) 
for converting strain gages bridge signals to high 
level and for bridge supply, 3) the high voltage 
amplifiers (PA05039,-500 V÷ +1500V) for the MFC 
actuators supply, 4) a PC on which the control laws 
are implemented and 5) an acquisition card (NI 
PCIe-6259) used for processing the signals from 
conditioners and for applying to the MFC actuator 
the  control  signal,  amplified  by  the  high voltage  
amplifiers. 

The values of the matrices 1 2 2A, B ,B ,C  were 
obtained by ANSYS analysis combined with 
analytic considerations based on the setup of the 
measured and regulated outputs. We note here that 
only one of the strain gages bonded on specimen 
was operational during the tests thus limiting the 
experiments to a single-output case. The first five 
natural frequencies of the plate identified from the 
FE model are 5.66 Hz, 25.23 Hz, 33.95 Hz, 81.03 

Hz, 95.05 Hz. Only a small modal damping factor of 
1% of the critical damping was applied to the model. 
The experimental frequencies identified with the 
setup described are 5 Hz, 26 Hz, 31 Hz, 157 Hz. 
Figure 5 shows the results of a simple process 
identification procedure based on impulse type 
perturbation. There is an acceptable match of the 
first three frequencies between the model and the 
measured ones. However, this does not apply for the 
higher modes, with only the mode at 157 Hz being 
detected by the strain gages. Consequently, only first 
three modes will be taken into account in the matrix 

1C . Figure 6 presents all the system matrices 
defined in (12), (13) both with the “static” weights. 
The consistency of the first three modes in process is 
attested by Figure 7. The frequency responses of the 
weighting filters (16) are shown in Figure 8. In 
choosing the dynamic weights, it is to mention the 
continuity with the static weights  

1 2 3η η ηk = 322, k = 39.3, k = 1.0881− − −  

1

2

3

ω =35.6091 rad/s
ω =158.5449 rad/s
ω =213.3373 rad/s

1 2 3 2k k k= = =    

1 4

2 3

a a

a a

ω =18.85 rad/s, ω =1885 rad/s

ω =25.13 rad/s, 0.5,ω =219.9 rad/sactk =
 

The steps of H∞ control synthesis, described in 
Sections 3.1 and 3.2, have been validated by 
numerical simulations and experiments (see Figures 
9, 10). A notable vibration attenuation of 17.4 dB is 
experimentally reached (Figure 10). For the sake of 
comparison, we cite the result 15.6 dB in (Yaman et 
al., 2002). The simulation result predicts a 
somewhat better performance, with a value of 26 dB 
for the attenuation (Figure 9). The attenuation values 
in the case of dynamic weights are similar. The 
better attenuation predicted by the model is 
explained primarily by the very small value of 
damping introduced in the model, very likely 
significantly smaller than the true damping value. 
This essentially leads to an over-prediction of the 
vibration amplitudes in the simulations. 
Additionally, the actuator efficiency in the model is 
considered to be ideal. A perfect actuator bonding to 
the plate base structure was assumed, without any 
modeling of the adhesive bond-line effects. Also, the 
actuator electro-mechanic behavior was assumed to 
be linear, without accounting for any hysteretic or 
other nonlinear effects. Finally, we note that the 
controller is derived for the numerical model, and 
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thus a certain reduction in performance is to be 
expected when applied to the real structure. 

We emphasize now the reason for justifying the 
use of an H∞  augmented system, instead of 
nominal one. When exciting the structure at 157 Hz, 
close to the fourth natural frequency, control 
spillover is noticeable. The fourth mode is not 
accounted for into the structural model during the 
controller synthesis phase and thus susceptible to 
spillover. Figure 11 exemplifies this phenomenon 
for the case of closed loop control with static-
weights. However, the controller response can be 
significantly reduced through weighting the 
regulated output variable, as shown in Figure 12. 
The application of the robust LQG/LTR control law 
is exemplified in Figure 13.  

6 CONCLUDING REMARKS 

This paper shows how to handle the apparatus of 
applied control for the problem of active vibration 
control design in smart structures. Both the 
theoretical background and the logistics defining the 
experimental specimen are presented. Two different 
approaches for the synthesis of robust control are 
detailed – robust ∞H  control and LQG/LTR 
control, as comparison term. It is worth noting the 
theoretical apparatus is confirmed by laboratory 
tests. Dynamic weights were successfully used as a 
method to prevent ∞H  control saturation. Also, the 
experimental results show a comparable trend with 
others reported in the literature.  
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Figure 6: The cantilever plate matrices. The system matrices defined in (12), (13) and the “static” weights. 
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Figure 7: The consistency of the basic first three modes, static weights,   400sin 2 5.66  Vf t= π×  . 
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Figure 8: Weighting functions: a) ηW , first mode; b) act W . 
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Figure 9: H∞ , static weights, numerical simulation,   500sin 2 5.66  Vf t= π× . 
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Figure 10: H∞ , static weights, experimental record,   500sin 2 5  Vf t= π× . 
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Figure 11: H∞ , static weights, experimental record,   500sin 2 157  Vf t= π× . 
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Figure 12: H∞ , dynamic weights, experimental record,   500sin 2 157  Vf t= π× . 
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Figure 13: LQG/LTR, experimental record, 400sin 2 5  Vf t= π× .
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