prototype with a module to guide experts to align
ontologies. In current systems the measure scheduling
is fixed; on the contrary, in our proposition, the
system selects the measures relatively to the ontology
characteristics.
A similarity database stores all the calculated
similarities and a mapping database containing all the
relations validated by the experts. All the stored
measures can be reused to avoid new computations
and so not to perform the process.
Currently, the system of the geotechnical
knowledge management is partially implemented.
The local ontologies and the created mappings
between concepts evolve. They imply modifications
in the global ontology and the generated mappings.
So, the first perspective of this work is to analyze the
consequences of the hybrid ontology evolution and
to propose some solutions to maintain the
consistence of all the ontologies (local and global).
There are diverse systems which manage the
ontology evolution (Stojanovic, 2004; Jaziri, 2010;
Djedidi, 2010). Our future contribution will manage
an hybrid ontology evolution.
The second perspective is to estimate all the
mappings stored in the similarity database. The
interest is to deduce other semantic relations.
Finally, the third perspective is to study the
scalability of the hybrid ontology and the alignments
between concepts.
REFERENCES
Abrouk L., Cullot N., Ghawi R., Gomez Carpio G-V.,
Poulain T., 2008. Cooperation of information sources
in OWSCIS System, In CGCT’2008.
David J., 2009. AROMA results for OAEI 2009, In
OM’2009, 4th ISWC workshop on ontology matching,
p.147-152, 2009.
Djedidi R., Aufaure M-A. ONTO-EVO
A
L an Ontology
Evolution Approach Guided by Pattern Modeling and
Quality Evaluation, In FoIKS’2010, p. 286-305.
Do H., Rahm E, 2002. COMA – a system for flexible
combination of schema matching approaches, In
VLDB’02, 28
th
International Conference on Very
Large Data Bases, p. 610-621.
Ehring M., 2007. Ontology Alignment: Bridging the
Semantic Gap: Semantic Web and Beyond, Springer.
Euzenat J., Valtchev P., 2004. Similarity-based ontology
alignment in OWL-lite, In ECAI’04, 15
th
European
Conference on Artificial Intelligence, p. 333-337.
Faure N., 2007. Un système d’aide à la modélisation des
connaissances en géotechnique, Thèse de doctorat en
informatique, Université Jean Moulin – Lyon3.
Jaziri W., Sassi N., Gargouri F., 2010. Approach and tool
to evolve ontology and maintain its coherence,
Metadata, Semantic and Ontologies, vol. 5, n°2,
p. 151-166.
Li J., Tang J., Luo Q., 2009. RiMOM: A Dynamic
Multistrategy Ontology Alignment Framework, IEEE
Transactions on Knowledge and Data Engineering,
vol. 21, n°8, p. 1218-1232.
Mädche A., Motik B., Silva N., Volz R., 2002. MAFRA-a
MApping FRAmework for distributed ontologies, In
EKAW’02, International Conference on Knowledge
Engineering and Knowledge Management, Springer,
p. 235-250.
Massmann S., Engmann D., Rahm E., 2006. COMA++:
Results for the Ontology Alignment Contest OAEI, In
OM’2006, 4th ISWC workshop on ontology matching.
Nguyen Xuan D., Bellatreche L., Pierra G., 2006. A
Versioning Management Model for Ontology-Based
Data Warehouses», DaWaK 2006, vol. 4081, 2006, p.
195-206.
Noy N., Musen M., 2001. Anchor PROMPT: Using non-
local context for semantic matching, In IJCAI’01,
Workshop on Ontology and Information Sharing,
p. 63-70.
Stojanovic L., 2004. Methods and Tools for Ontology
Evolution, PhD thesis, University of Karlsruhe.
Tang J., Li J., Liang B., Huang X., Li Y., Wang K., 2006.
Using bayesian decision for ontology mapping,
Journal of Web Semantics, vol. 4, n° 4, p.243-262.
Visser U., Stuckenschmidt H., Schlieder C., Wache H.,
Timm I., 2002. Terminology Integration for the
management of distributed information resources,
Kuenstliche Intelligenz Journal, vol. 16, p. 31-34.
Ziani M., Boulanger D., Talens G., 2008. Designing an
Hybrid ontology From Domain Ontologies, In
JFO’08, 2
e
Journées Francophones sur les
Ontologies, Lyon, p. 41-47.
Ziani M., Boulanger D., Talens G., 2011. Système d’aide à
l’alignement d’ontologies métier–Application au
domaine de la géotechnique, revue Ingénierie des
systèmes d’informations, vol. 16, n°1, p. 89-112.
BUSINESS ONTOLOGIES COOPERATION
219