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Abstract: Parallel evolutionary algorithms are able to improve the performance of simple evolutionary algorithms 
which use a single population. Their characteristics and performance depend on their architectures and other 
factors and parameters. In our contribution we present some viewpoints of classification and we 
demonstrate experimentally the influence of selected factors such as architecture type, migration topology, 
migration period, number of migrants, numbers of subpopulations, subpopulation size and others on the 
performance of these algorithms. This experimental study should help to generalise the properties and 
behaviour of various types of   parallel evolutionary algorithms and help to design algorithms for solving 
hard search/optimisation problems like modelling of bio-medicine processes, optimisation of 
pharmaceutical dosing, optimisation of large technological and construction tasks etc. 

1 INTRODUCTION 

Parallel evolutionary algorithms (PEA) or parallel 
genetic algorithms (PGA) are evolutionary 
algorithms, which consist at least of two levels of 
parallelisation. The first level contain most types of 
evolutionary algorithms thanks their population 
based nature. Each individual represents a trajectory 
in the search space. The main drawback of the 
simple or single-population algorithms is the high 
computation effort or time needed to find the 
solution. The next drawback is that simple 
evolutionary algorithms are often unable to avoid the 
premature convergence, which is the stagnation in 
the local optimum. To prevent these drawbacks a 
next level of parallelisation using multiple 
populations can be used.  

Several authors used various types of PEA and 
several authors published various classifications of 
PEA or PGA (Alba, 2002, Cantú-Paz, 1995, 
Nowostawski, 1999 and others).  The PEA, aside 
from the number of computation units used 
(processors, computers), bring also other advantages 
in comparison to simple (single-population) 
evolutionary algorithms (SEA) or simple genetic 
algorithms (SGA). These advantages are multi-
parallel search in a large, multidimensional search 
space, higher diversity of the population, better 

algorithm control possibilities, higher computation 
power, etc. If we are able to design efficient 
architectures of PEA and to find their good 
parameters, the PEA will reach better solutions, 
avoid premature convergence and reduce time, 
which is needed to find the solution in comparison to 
SEA. Additionally, if using multiple computation 
units the computation power is growing sub linearly.  
All together, PEA result in a significant performance 
increase. 

In this contribution some viewpoints of PEA 
classification are described. But the goal of this 
paper is an experimental comparison of selected 
PGA representatives and analysis of the influence of 
selected PEA parameters on their performance. Our 
attention was focused to island-based migration-type 
PGA, island-based overlapping-type PGA and 
cellular PGA. We analysed the influence of PGA 
architecture, migration topology, migration period, 
number of migrants, number of subpopulations, 
subpopulation size and some other factors on the 
performance. 

2 CLASSIFICATION OF PEA  

Let us consider following viewpoints of PEA 
classification. The first is the number of computation 
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units used, the second is the granularity or the 
number of subpopulations and their size and the 
third viewpoint is the type of information exchange 
between subpopulations of the PEA. 

2.1 Number of Computation Units 

The first question is how much computation units 
are used for the PEA realisation. This is a technical 
aspect, which influences computation time, but not 
the algorithm as such or the number of the total 
fitness function evaluations of the entire PEA 
needed for finding a good result. Using N-
computation units (processors, computers) we are 
able to speed up the computation power nearly N-
times. The use of multiprocessor configurations 
distributes the computation load to more processing 
nodes.  The simplest computational topology uses 
only a single population and the algorithm manager 
distributes the fitness function evaluation (or 
sometimes also the crossover and mutation) to other 
free processors. Such topology is called global or 
master-slave. The only communication is the request 
for the fitness calculation in one direction and than 
the computed fitness value in the other direction. 
This topology can by an extensive way save 
computation time, but it is not able to decrease the 
number of fitness function evaluations.  

2.2 Granularity of the PEA 

The most obvious viewpoint of PEA (PGA) 
classification is the PEA granularity which divide 
PEA to coarse-grained and fine-grained ones 
(Cantú-Paz, 1995). 

 
Figure 1: Migration-based coarse-grained PEA. 

Coarse-grained PEA consist of relatively small 
number of relatively large subpopulations (islands) 
(Fig.1, Fig.2). The use of coarse-grained PEA 
topologies is advantageous when information 
combination of individuals from partially isolated 
subpopulations can produce new perspective search 
directions or even solutions. Many authors have 
presented coarse-gained PGA or island models in 
literature e.g. (Lin, 1994, Whitley, 1999, Cantú-Paz, 
1999, Skolicki, 2005) and others.  
In case of fine-grained PGA many islands with a 
small  number  of individuals  are  considered.  The 

 
Figure 2: Overlapping-based coarse-grained PEA. 

outermost but also the most obvious case is when 
each island is represented only by a single 
individual. Such topology is called also cellular 
(Fig.3) (Giacobini, 2005 and others). 

The hybrid topologies are the last case of PEA, 
which represent various combinations of fine- and 
coarse-grained PEA.  

 
Figure 3: Fine-grained cellular PEA. 

2.3 Information Exchange in PGA 

The last viewpoint of PGA classification discussed 
is the information exchange between the 
subpopulations. Here let us distinguish migration, 
individual sharing and diffusion. The islands in the 
coarse-grained PEA interchange the genetic 
information either using the migration operator or 
sharing some individuals in overlapping areas of 
more subpopulations. Migration is performed by 
copying of selected individuals from the source 
island to the target island according to defined 
migration connections (for example as described in 
Fig.1). The migration is performed in defined 
periodic time intervals or non-periodically when 
some predefined conditions are fulfilled. The correct 
selection of migration periods should ensure that 
each island has sufficient time for isolated evolution 
of their individuals and for producing perspective 
genetic information. Block scheme of such 
algorithm is in Fig.4. In the overlapping topology, 
selected number of individuals belongs to more 
subpopulations; they can be selected as parents and 
crossed over with individuals of other 
subpopulations (Fig.2). Finally, in the cellular fine-
grained PEA the genetic information is exchanged 

subpopulation  A

subpopulation B 

subpopulation N 

single 
individual 
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due to crossover of each individual of the population 
with a selected neighbour. The individuals are 
geometrically organised in a 2-D or 3-D grid. The 
information motion here imitates diffusion. 

 
Figure 4: Block scheme of a migration-based PEA with 
multiple subpopulations and migrations between them. 

3 USED PGA CONFIGURATIONS 

In our experimental analysis three types of PGA 
topology have been considered: 1. migration-type 
coarse-grained, 2. overlapping-type coarse-grained 
and 3. cellular fine-grained. The influence of 
selected parameters have been analysed and the 
performance of selected PGA configurations have 
been compared on the example of minimisation of 
the Eggholder function. Note, that during this project 
other test function has been tested and a very large 
number of experiments was performed. 

3.1 Coarse-grained PGA with 
Migration 

We have used various migration-based PGA 
topologies with communication between islands 
according to Fig.5 A-G (Sekaj, 2004, Sekaj, 2007). 
Each arrow represents a migration direction. When 
not explicitly indicated, nine islands were used, each 
island consists of 64 individuals and the number of 
all individuals in the PGA was 9x64=576. The 
following genetic algorithm is running in each 
island: 
1. Population initialisation (by random) and fitness 
calculation. 
2. Selection of 4 the best individuals, which are 
without any change copied into the new population. 

Random selection of a group of 20 individuals, 
which are copied without any change into the new 
population. Selection of 40 parents using the 
tournament selection method. 
3. Mutation (rate=0.1) and crossover (rate =0.7) of 
parents. 
4. Completion of the new population. 
5. Fitness calculation. 
6. Test of terminating condition, if not fulfilled, then 
jump to the Step 2. 

The best-random migration policy is used, that is the 
best individual from the source island is copied and 
it replaces a randomly selected individual in the 
target island. 

 
Figure 5: Coarse-grained migration-based PGA topologies 
used in our experiments.  

3.2 Coarse-grained PGA with 
Overlapping areas 

This architecture contains overlapping areas where 
some individuals belong to more subpopulations and 
the information interchange between them is 
provided only by crossover (Fig.6). No migration 
between islands is provided. However, the 
evolutionary algorithm used is the same as in the 
previous architecture. 

 
Figure 6: Coarse-grained overlapping-based PGA 
topology. 
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3.3 Fine-grained PGA 

In the considered fine-grained cellular topologies 
each node represents a single individual (Sekaj, 
2009). There are 24 rows and 24 columns, together 
576 individuals (Fig.7). Two types of the fine-
grained PGA algorithms have been considered. In 
each generation we selected one neighbour of 4 or 8 
possible neighbour candidates (Fig.7 left and right, 
respectively) for each original individual of the 
population using tournament selection. These two 
individuals are crossed over and two new children 
are produced. If one of the two children is better 
than the original individual, it replaces it. But the 
population is updated (the old individuals are 
replaced) as late as the last individual of the PGA is 
crossed over. Two alternatives were used for 
mutation. In the first case the crossed over children 
are mutated and then the best individual is chosen to 
replace the original individual. In the second case all 
individuals are crossed over, replaced and then the 
entire population is mutated with the mutation rate 
0.1. 

 
Figure 7: Neighbour selection in cellular PGA topologies. 
Each island is a single individual. 

4 EXPERIMENTAL RESULTS 

4.1 Test Function 

For all experiments the Eggholder function of 10 
variables has been used. It is in form 

(1) 

-500 ≤ xi ≤500 

The position of the global optimum is unknown. 
Graph of this function with two variables is in Fig.8 

 
Figure 8: Graph of the Eggholder function with 2 
variables. 

4.2 Experimental Results 

The goal was to perform an experimental analysis of 
the above described PGA architectures and to find 
the important factors, which have positive influence 
on their performance. We have analysed and 
compared the influence of the PGA type and its 
topology, migration period length, number of 
individuals migrated, number of islands and 
population size on the convergence rate. Each graph 
in the depicted figures represents the mean value of 
30 runs of the corresponding PGA. 

In the first experiment the topology B with 9 
islands (Fig.5B) is considered. The influence of 
changing migration period is analyzed (Fig.9). 
Migration period from 1 to 100 generations has been 
compared. The best performance was obtained with 
migration period between 20 and 100 generation. 
When shorter migration periods, from 1 to 10 
generation, were used the PGA starts to behave 
similar as the single population GA (SGA) because 
of frequent information exchange between the 
islands. Such results were worst than the PGA 
without migration (marked - No migration). In the 
SGA and in PGA with intensive migration the 
algorithm is predisposed to premature convergence. 
This is because the currently best individuals which 
direct to local optima, can influence the entire 
population i.e. influence other subpopulations to 
premature convergence before they are able to 
evolve perspective genes or building blocs 
respectively. 

 
. 
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Figure 9: The influence of changing migration period. 

Next, the influence of changing the number of 
islands is compared. Fig.10 depicts results reached 
with 5 to 25 islands. Number of individuals in each 
island is 50. The number of all individuals in the 
PGA is not constant. It is Nx50, where N is the 
number of islands. For objective comparison the 
number of fitness function evaluations instead of 
number of generations is used on the horizontal 
axes. The best result was obtained with 25 islands. 
The next experiments (Fig.11 and Fig.12) show that 
for the Eggholder function with 10 variables the 
optimal number of islands is between 9 and 25 with 
subpopulation size from 50 to 100 individuals.  
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Figure 10: The influence of changing number of islands. 

 

Figure 11: Number of islands / population size. 

 

Figure 12: Number of islands / population size. 

In Fig.13 various topologies of migration 
connections (according Fig.5) have been compared. 
In case of the Eggholder function the topologies A, 
B and C shows faster convergence rate. However, in 
general we assume that the migration connection 
topology has not a significant influence on the PGA 
performance. Note, that this can change, if we 
consider PGA with "heterogeneous" structure i.e. 
when various parameters of GA are used in various 
islands or regions of the PGA. In such a way it is 
possible to control the selective pressure and 
population diversity in the PGA (Sekaj, 2004, Sekaj, 
2007). However, this was out of the scope of this 
paper. In this paper a "homogeneous" PGA structure 
is considered, where each subpopulation has the 
same genetic algorithm and its parameters. 

 
Figure 13: Various topologies of migration-based PGA. 

Higher influence than the migration topology has the 
migration period, number of islands and the 
subpopulation size. In Fig.14 comparison of 
changing migration periods vs. changing number of 
migrants is shown. Here the random migration 
topology G (Fig.5) has been used. In all cases 
similar (or even equal) numbers of migrants in a 
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longer time interval were exchanged. The best 
performance has been obtained with the migration 
period between 20 and 100 generations. 
Lower or higher values of migration periods results 
in worst performance. Each subpopulation needs 
time between the migrations for their isolated 
evolution to produce perspective genes or building 
blocs, respectively. On the other hand, the number of 
migrants hasn't a significant influence on the 
performance ( Fig.15). 

The next important factor is the population size. 
In Fig.11 various configurations (number of islands / 
population size) are compared. In each case the 
number of individuals in the entire PGA was 450. 
The best performance results from the configuration 
9/50, which has a sufficient number of islands as 
well as sufficient subpopulation size. In Fig.12 the 
same factors are considered, but the numbers of 
individuals in the entire PGA are not equal. 
Therefore, on the horizontal axes the number of 
fitness evaluations instead of the number of 
generations is used. The best performance was 
obtained with the configurations 15/50, 25/50 and 
9/100 where sufficient number of islands and 
sufficient subpopulation sizes ensures satisfactory 
conditions, sufficient diversity and relative 
independence of particular subpopulations. 

 
Figure 14: Migration period / number of migrants. 

 
Figure 15: Changing number of migrants, migration period 
is 100 generations. 

In Fig.16 the results of the overlapping-based PGA 
are compared. We consider the architecture 
according Fig.6 and Fig.7 with 9 overlapping 
subpopulations. The number of individuals in the 
overlapping areas has been changed from 2 to 10 
and 16 individuals. The best performance has been 
obtained with 10 shared individuals between each 
two subpopulations. 

 
Figure 16: Overlapping PGA, various numbers of shared 
individuals. 

The last mentioned PGA type is the fine-grained or 
cellular architecture. Four variants of this algorithm 
are compared in Fig.17. The algorithms are 
described in the part 3.3. The first two types (1 and 
2) perform mutation at the end of the new generation 
calculation, when all individuals of the population 
are already crossed over with selected neighbours 
and replaced by the best offspring. Type 1 selects 
the partner for crossing over from 8 neighbours 
(Fig.7 left) and type 2 from 4 neighbours (Fig.7 
right). Types 3 and 4 perform the mutation after 
crossover of both parents. Then the best mutated 
individual replaces the original individual. Type 3 
selects the partner for crossover from 8 neighbours 
and the type 4 from 4 neighbours. 

 
Figure 17: Various types of cellular PGA. 
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The last figure (Fig.18) depicts the comparison of 
the best representatives of all PGA architectures. 
The fastest convergence in case of the Eggholder 
function has been achieved by the fine-grained 
(cellular) PGA.  

 
Figure 18: Comparison of various PGA types: Coarse-
grained migration-based PGA (C-M), Coarse-grained 
overlapping-based PGA (C-O), Fine-grained PGA (F). 

5 CONCLUSIONS 

Selected types of parallel genetic algorithms have 
been experimentally compared and the influence of 
some of their parameters analyzed. We have 
considered various architectures, various topologies 
of migration connections, influence of changing 
migration period, population size and number of 
islands. In our experiments using the Eggholder 
function the fine-grained PGA performance 
outperforms the coarse-grained PGA. However, the 
performance of all PGA types depends on their 
parameters as well as on the problem to be solved. 

In our comparison in each island of the PGA the 
genetic algorithm with equal parameters has been 
considered. Such "homogenous" algorithms have the 
same diversity and selection pressure in all 
subpopulations. Based on our experiments for such 
type of PGA (PEA) we can make following 
conclusions. Changing of migration topology has a 
small influence on the PGA performance. The main 
influence on the performance has the migration 
period, subpopulation size and number of islands. 
These factors affect the ability of all subpopulations 
of the PGA to evolve perspective genes and building 
blocs and effectively to explore the search space.  
For each problem solved it is important to find a 
balance between the "independence" of each 
subpopulation for their evolution and diversity in 
each subpopulation on the one side and the 
communication and exchange of perspective genetic 
information between subpopulations or individuals  

on the other side. 
The presented experimental study is a part of a 

project, which should help to generalise the 
properties and behaviour of various types of   
parallel evolutionary algorithms and help to design 
algorithms for solving hard search/optimisation 
problems like modelling of bio-medicine processes, 
optimisation of large technological and construction 
tasks, solving of economical and financial problems  
etc. 
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