Smoothing Compute firing rate
Build histograms
Input image
Contrast
Rate
Descriptors
Smoothing
Compute gradient
Build histograms
Input image
Gaussian
Descriptors
scale space
Compute gradient
Compute gradient
norm
orientation
Figure 7: Main operations to extract BiF descriptors (on top) and SIFT ones (at the bottom). Major differences are steps
within the dashed box.
REFERENCES
Bel Haj Ali, W., Piro, P., Debreuve, E., and Barlaud, M.
(2010). From descriptor to boosting: Optimizing the
k-nn classification rule. In Content-Based Multime-
dia Indexing (CBMI), 2010 International Workshop
on, pages 1–5.
Cortes, C. and Vapnik, V. (1995). Support-vector net-
works. Machine Learning, 20:273–297. 10.1007/
BF00994018.
Delorme, A., Gautrais, J., van Rullen, R., and Thorpe, S.
(1999). Spikenet: A simulator for modeling large net-
works of integrate and fire neurons. Neurocomputing,
26-27:989–996.
Denoeux, T. (1995). A k-nearest neighbor classification rule
based on dempster-shafer theory. Systems, Man and
Cybernetics, IEEE Transactions on, 25(5):804–813.
Escobar, M.-J., Masson, G., Vieville, T., and Kornprobst,
P. (2009). Action recognition using a bio-inspired
feedforward spiking network. International Journal of
Computer Vision, 82:284–301. 10.1007/s11263-008-
0201-1.
Field, D. J. (1994). What is the goal of sensory coding?
Neural Computation, 6(4):559–601.
Freund, Y. and Schapire, R. E. (1995). A decision-theoretic
generalization of on-line learning and an application
to boosting.
Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond
bags of features: spatial pyramid matching for recog-
nizing natural scene categories. In IEEE Conference
on Computer Vision and Pattern Recognition, New
York (NY), USA.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. Computer Vision, IEEE Interna-
tional Conference on, 2:1150.
Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International Journal of Computer Vision,
42:145–175. 10.1023/A:1011139631724.
Piro, P., Nock, R., Nielsen, F., and Barlaud, M. (2010).
Boosting k-nn for categorization of natural scenes.
ArXiv e-prints.
Rodieck, R. (1965). Quantitative analysis of cat retinal gan-
glion cell response to visual stimuli. Vision Research,
5(12):583–601.
Russell, B., Torralba, A., Murphy, K., and Freeman, W.
(2008). Labelme: A database and web-based tool for
image annotation. International Journal of Computer
Vision, 77:157–173. 10.1007/s11263-007-0090-8.
Schapire, R. E. and Singer, Y. (1999). Improved boosting al-
gorithms using confidence-rated predictions. Machine
Learning, 37:297–336. 10.1023/A:1007614523901.
Sivic, J. and Zisserman, A. (2006). Video google: Effi-
cient visual search of videos. In Ponce, J., Hebert,
M., Schmid, C., and Zisserman, A., editors, Toward
Category-Level Object Recognition, volume 4170 of
Lecture Notes in Computer Science, pages 127–144.
Springer Berlin / Heidelberg. 10.1007/11957959 7.
Thorpe, S. and Gautrais, J. (1998). Rank order coding. In
Proceedings of the sixth annual conference on Com-
putational neuroscience : trends in research, 1998:
trends in research, 1998, CNS ’97, pages 113–118,
New York, NY, USA. Plenum Press.
Thorpe, S. J., Guyonneau, R., Guilbaud, N., Allegraud, J.-
M., and VanRullen, R. (2004). Spikenet: real-time vi-
sual processing with one spike per neuron. Neurocom-
puting, 58-60:857–864. Computational Neuroscience:
Trends in Research 2004.
Van Rullen, R. and Thorpe, S. J. (2001). Rate coding versus
temporal order coding: what the retinal ganglion cells
tell the visual cortex. Neural Comput, 13(6):1255–
1283.
Vedaldi, A. and Fulkerson, B. (2008). VLFeat: An open and
portable library of computer vision algorithms. http://
www.vlfeat.org/.
BIO-INSPIRED BAGS-OF-FEATURES FOR IMAGE CLASSIFICATION
281