package (Burke, et al. 2006), which is a
deterministic solver and considered as one of the
best effective tool for the synthesis of static output
feedback, and those obtained in (Arzelier, et al.,
2010). Corresponding results are given in table 2.
5 CONCLUSIONS
Optimization has always played an important role in
the field of Automatic Control. Indeed, most of the
existing control design methodologies are concerned
with the solution to optimization problems.
Table 2: Computation of H
static output feedbacks.
Ex.
n m r HIFOO Ar. et al PSO
A1
A2
A5
A9
A10
A11
A12
A13
A14
A18
5
5
4
10
55
5
4
28
40
10
3
3
2
4
2
2
3
3
3
2
3
3
2
5
2
4
4
4
4
2
4.14 10
-7
0.1115
669.56
1.0029
Inf
2.8335
0.3120
163.33
101.7203
12.6282
1.76 10
-
0.1115
661.7
1.0061
Inf
2.8375
0.6165
395.0404
319.31
10.6214
4.7 10
-
0.1115
665.09
1.098
Inf
2.8609
0.3134
167.36
101.96
27.18
H1
H3
H4
H5
H6
H7
4
8
8
4
20
20
2
4
4
2
4
4
1
6
6
2
6
6
0.1539
0.8061
22.8282
8.8952
192.3445
192.3885
0.1538
0.8291
22.8282
17.6061
401.7698
353.9425
0.1529
0.8399
23.43
10.0031
195.86
194.24
D2
D4
D5
3
6
4
2
4
2
2
6
2
1.0412
0.7394
1035.5
1.0244
0.7404
1030.82
1.0255
0.7863
1028
J2
J3
21
24
3
3
3
6
183.3512
5.0963
365.09
9.194
192.17
5.138
R1
R2
R3
4
4
12
2
2
1
3
2
3
0.8694
1.1492
74.2513
0.8661
1.1482
74.2513
0.8738
1.1451
74.2513
W1
10 3 4 4.0502 4.1055 6.4843
B2
82 4 4 0.6471 2.90 1.0345
S
60 2 30 0.0201 0.02 0.0200
P
5 1 3 32.2258 0.0087 0.0571
T1
T2
T3
7
7
7
2
2
2
4
3
3
0.3736
5200
0.4567
0.3799
5200
0.3264
0.4038
5200
0.5829
N1
N2
N5
N6
N7
N9
N12
N13
N14
N15
N16
N17
3
2
7
9
9
5
6
6
6
3
8
3
1
1
1
1
1
3
2
2
2
2
4
2
2
1
2
4
4
2
2
2
2
2
4
1
13.9089
2.2216
266.54
5602
74.0757
28.6633
16.3925
14.0589
17.4778
0.0982
0.9556
11.2182
13.458
2.2050
266.5445
5602
74.0372
31.03
16.3116
14.0579
17.4757
0.0980
0.9556
11.2182
13.8189
2.2049
266.4023
5593
74.0326
30.1549
17.7568
14.4829
17.5063
0.0980
0.9560
11.4864
Table 2: Computation of H
static output feedbacks.
(cont.)
F10
F11
F14
F15
F16
F17
F18
5
5
5
5
5
5
5
2
2
2
2
2
2
2
3
3
4
4
4
4
2
79853
7719
53156
17521
44432
30024
124.7259
82314
78248
557008
202610
465790
303380
154.9970
80658
77213
535040
178900
447500
300240
126.6402
TM
6 2 4 2.5267 2.1622 2.8015
FS
5 1 3 96925 87160 84727
However, in the classical approach, particular
expressions and reformulation of initial costs and
constraints functions are used to get an optimization
problem which can be exactly solved. To capture the
difficulties of the initial optimization problems an
underused approach relies on the use of stochastic
algorithms which are able to deal with whatever
costs and constraints. In this paper, the main focus is
on the use of Particle Swarm Optimization algorithm
to solve some generic Automatic Control problems:
PID optimization, and reduced order H
synthesis.
All these results are much than satisfactory, showing
the interest of using such algorithms, as results are
quite similar to standard deterministic algorithms.
Finally, Automatic Control appears as a large,
mostly unexplored, field of applications for the
metaheuristic community.
REFERENCES
Arzelier, D., Gryazina, E. N., Peaucelle, D., Polyak, T.,
2010. Mixed LMI/Randomized methods for static
output feedback control design. In: Proceedings of the
IEEE American Control Conference, Baltimore, USA.
Burke, J. V., Henrion, D., Lewis, A. S., Overton M. L.,
2006. HIFOO - A Matlab package for fixed-order
controller design and H
optimization. In:
Proceedings of the IFAC Symposium on Robust
Control Design, Toulouse.
Eberhart, R. C., Kennedy, J., 1995. A new optimizer using
particle swarm theory. In Proc. of the Sixth
International Symposium on Micromachine and
Human Science, Nagoya, Japan. pp. 39-43.
Gahinet, P., Apkarian, P., 1994. A linear matrix inequality
approach to H
control. In: Int. Journal of Robust and
Nonlinear Control, vol. 4, pp. 421-448.
Kennedy, J., Clerc, M., 2006. Standard PSO.
http://www.particleswarm.info/Standard_PSO_2006.c.
Kwakernaak, H., Sivan, R., 1972. Linear optimal control
New York: Willey-interscience.
Leibfritz, F., 2004. COMPleib: COnstraint Matrix-
optimization Problem library - a collection of test
examples for nonlinear semidefinite programs, control
system design and related problems. Technical report.
ECTA 2011 - International Conference on Evolutionary Computation Theory and Applications
318