Figure 14: Prime numbers.
REFERENCES
Angluin, D. (1980). Inductive inference of formal lan-
guages from positive data. In Information and Con-
trol, volume 42.
Brazma, A. (1994). Efficient algorithm for learning simple
regular expressions from noisy examples. In Work-
shop on Algorithmic Learning Theory ALT’94, Lec-
ture Notes in Computer Science, volume 872.
Bremermann, H. J. (1962). Optimization through evolution
and recombination. In Self-Organizing systems 1962,
edited M.C. Yovitts et al., page 93106, Washington.
Spartan Books.
Cook, J. and Woolf, A. (1998). Discovering models of
software processes from event-based data. In ACM
Transactions on Software Engineering and Methodol-
ogy, volume 7/3.
de Medeiros, A., van Dongen, B., van der Aalst, W., and
Weijters, A. (2004). Process mining: Extending the
alpha-algorithm to mine short loops. In BETA Work-
ing Paper Series, Eindhoven. Eindhoven University of
Technology.
Friedberg, R. M. (1956). A learning machines part i. In IBM
Journal of Research and Development, volume 2.
Friedberg, R. M., Dunham, B., and North, J. H. (1959). A
learning machines part ii. In IBM Journal of Research
and Development, volume 3.
Gold, E. (1967). Language identification in the limit. In
Information and Control, volume 10.
Grunwald, P. D. and Rissanen, J. (2007). The minimum
description length principle. In Adaptive Computation
and Machine Learning series. The MIT Press.
Herbst, J. (2000). A machine learning approach to workflow
management. In 11th European Conference on Ma-
chine Learning, Lecture Notes in Computer Science,
volume 1810.
Holland, J. H. (1975). Adaption in natural and artificial sys-
tems. Ann Arbor. The University of Michigan Press.
Medeiros, A., Weijters, A., and van der Aalst, W. (2007).
Genetic process mining: an experimental evaluation.
In Data Mining and Knowledge Discovery, volume
14/2.
Rechenberg, I. (1971). Evolutions strategie – optimierung
technischer systeme nach prinzipien der biologischen
evolution. In PhD thesis. Reprinted by Fromman-
Holzboog (1973).
Ren, C., Wen, L., Dong, J., Ding, H., Wang, W., and Qiu,
M. (2007). A novel approach for process mining based
on event types. In IEEE SCC 2007, pages 721–722.
Valiant, L. (1984). A theory of the learnable. In Communi-
cations of The ACM, volume 27.
van der Aalst, W. (2011). Process mining: Discovery,
conformance and enhancement of business processes.
Springer Verlag.
van der Aalst, W., de Medeiros, A. A., and Weijters, A.
(2006a). Process equivalence in the context of genetic
mining. In BPM Center Report BPM-06-15, BPMcen-
ter.org.
van der Aalst, W. and M. Pesic, M. S. (2009). Beyond pro-
cess mining: From the past to present and future. In
BPM Center Report BPM-09-18, BPMcenter.org.
van der Aalst, W. and ter Hofstede, A. (2002). Workflow
patterns: On the expressive power of (petri-net-based)
workflow languages. In BPM Center Report BPM-02-
02, BPMcenter.org.
van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., and
Barros, A. (2000). Workflow patterns. In BPM Center
Report BPM-00-02, BPMcenter.org.
van der Aalst, W. and van Dongen, B. (2002). Discover-
ing workflow performance models from timed logs.
In Engineering and Deployment of Cooperative Infor-
mation Systems, pages 107–110.
van der Aalst, W., Weijters, A., and Maruster, L. (2006b).
Workflow mining: Discovering process models from
event logs. In BPM Center Report BPM-04-06, BPM-
center.org.
Weijters, A. and van der Aalst, W. (2001). Process min-
ing: Discovering workflow models from event-based
data. In Proceedings of the 13th Belgium-Netherlands
Conference on Artificial Intelligence, pages 283–290,
Maastricht. Springer Verlag.
Wen, L., Wang, J., and Sun, J. (2006). Detecting implicit
dependencies between tasks from event logs. In Lec-
ture Notes in Computer Science, volume 3841, pages
591–603.
Wynn, M., Edmond, D., van der Aalst, W., and ter Hofstede,
A. (2004). Achieving a general, formal and decidable
approach to the or-join in workflow using reset nets.
In BPM Center Report BPM-04-05, BPMcenter.org.
SKELETAL ALGORITHMS
89