0 5 10 15 20 25 30 35 40
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
Number of constraints
Accuracy
C
1
C
2
C
3
C
4
(a) ’Colon Cancer’.
0 5 10 15 20 25 30 35 40
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
Number of constraints
Accuracy
C
1
C
2
C
3
C
4
(b) ’Leukemia’.
Figure 3: Accuracy rates vs. number of constraints for C
1
, C
2
, C
3
and C
4
on the gene expression databases thanks to the
semi-supervised evaluation scheme. The desired number of selected features is half of the number of the original features.
the constraints specially when several constraints are
defined with the same sample. So, it will be interest-
ing to use another constrained classification algorithm
that is more efficient than this one, as these presented
by Kulis et al. (Kulis et al., 2009) and Davidson et al.
(Davidson et al., 2006).
REFERENCES
Alon, U., Barkai, N., Notterman, D., Gishdagger, K., Ybar-
radagger, S., Mackdagger, D., and Levine, A. (1999).
Broad patterns of gene expression revealed by cluster-
ing analysis of tumor and normal colon tissues probed
by oligonucleotide arrays. Proceedings of the Na-
tional Academy of Science of the USA, 96(12):745–
6750.
Blake, C., Keogh, E., and Merz, C. (1998). UCI
repository of machine learning databases.
http://www.ics.uci.edu/ mlearn/MLRepository.html.
Carpaneto, G. and Toth, P. (1980). Algorithm 548: solu-
tion of the assignment problem. ACM Transactions
on Mathematical Software.
Davidson, I., Wagstaff, K., and Basu, S. (2006). Measur-
ing constraint-set utility for partitional clustering al-
gorithms. In In proceedings of the Tenth European
Conference on Principles and Practice of Knowledge
Discovery in Databases ’PKDD06’, pages 115–126,
Berlin, Germany.
Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasen-
beek, M., Mesirov, J. P., Coller, H., Loh, M. L., Down-
ing, J. R., Caligiuri, M. A., and Bloomfield, C. D.
(1999). Molecular classification of cancer: class dis-
covery and class prediction by gene expression moni-
toring. Science, 286:531–537.
He, X., Cai, D., and Niyogi, P. (2005). Laplacian score
for feature selection. In Proceedings of the Advances
in Neural Information Processing Systems (’NIPS
05’), pages 507–514, Vancouver, British Columbia,
Canada.
Kalakech, M., Biela, P., Macaire, L., and Hamad, D. (2011).
Constraint scores for semi-supervised feature selec-
tion: A comparative study. Pattern Recognition Let-
ters, 32(5):656–665.
Kalakech, M., Porebski, A., Biela, P., Hamad, D., and
Macaire, L. (2010). Constraint score for semi-
supervised selection of color texture features. In Pro-
ceedings of the third IEEE International Conference
on Machine Vision (ICMV 2010), pages 275–279.
Kudo, M. and Sklansky, J. (2000). Comparison of algo-
rithms that select features for pattern classifiers. Pat-
tern Recognition, 33(1):25–4.
Kulis, B., Basu, S., Dhillon, I., and Mooney, R. (2009).
Semi-supervised graph clustering: a kernel approach.
Machine Learning, 74(1):1–22.
Liu, H. and Motoda, H. (1998). Feature extraction con-
struction and selection a data mining perspective.
Springer, first edition.
Samaria, F. and Hartert, A. (1994). Parameterisation of
a stochastic model for human face identification. In
Proceedings of the Second IEEE Workshop on Appli-
cations of Computer Vision ’ACV 94’, pages 138–142,
Sarasota, Florida.
Sun, D. and Zhang, D. (2010). Bagging constraint score
for feature selection with pairwise constraints. Pattern
Recognition, 43:2106–2118.
Wagstaff, K., Cardie, C., Rogers, S., and Schroedl, S.
(2001). Constrained k-means clustering with back-
ground knowledge. In Proceedings of the Eigh-
teenth International Conference on Machine Learning
’ICML 01’, pages 577–584, Williamstown, MA, USA.
Zhang, D., Chen, S., and Zhou, Z. (2008). Constraint score:
A new filter method for feature selection with pairwise
constraints. Pattern Recognition, (41):1440–1451.
Zhao, J., Lu, K., and He, X. (2008). Locality sensitive semi-
supervised feature selection. Neurocomputing, 71(10-
12):1842–1849.
Zhao, Z. and Liu, H. (2007). Semi-supervised feature selec-
tion via spectral analysis. In Proceedings of the SIAM
International Conference on Data Mining ’ICDM 07’,
pages 641–646, Minneapolis.
NCTA 2011 - International Conference on Neural Computation Theory and Applications
182