BIOLOGICALLY INSPIRED EDGE DETECTION USING SPIKING NEURAL NETWORKS AND HEXAGONAL IMAGES

Marine Clogenson, Dermot Kerr, Martin McGinnity, Sonya Coleman, Qingxiang Wu

2011

Abstract

Inspired by the structure and behaviour of the human visual system, we extend existing work using spiking neural networks for edge detection with a biologically plausible hexagonal pixel arrangement. Standard digital images are converted into a hexagonal pixel representation before being processed with a spiking neural network with scalable hexagonally shaped receptive fields. The performance is compared with different sized receptive fields implemented on standard rectangular images. Results illustrate that using hexagonal-shaped receptive fields provides improved performance over a range of scales compared with standard rectangular shaped receptive fields and images.

References

  1. Abdou, I. E. and Pratt, W. K., (1979). Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. of the IEEE, 67(5) pp. 753-763.
  2. Allen J. D., (2003). Filter Banks for Images on Hexagonal Grid. Signal Solutions.
  3. Buhmann, J. M., Lange, T. M and Ramacher, U., (2005). Image segmentation by networks of spiking neurons. Neural computation, 17, 5, 1010-1031.
  4. Chevallier, S., Tarroux, P. and Paugam-Moisy, H., (2006). Saliency extraction with a distributed spiking neural network. Proc. of ESANN, 209-214.
  5. Chevallier, S. and Dahdouh, S., (2009). Difference of Gaussians Type Neural Image Filtering with Spiking Neurons”. Proc. of Int. Conf. on Neural Compuation, Maderia, Portugal.
  6. Delorme, A. and Thorpe, S. J., (2003). SpikeNET: an event-driven simulation package for modelling large networks of spiking neurons. Computation in Neural Systems,14(4), 613-627.
  7. Egmont-Petersen, M., De Ridder, D. and Handels, H., (2002). Image processing with neural networks-a review. Pattern Recognition,35(10), 2279-2301.
  8. Escobar, M. J., Masson, G. S., Vieville, T. and Kornprobst, P., (2009). Action Recognition Using a Bio-Inspired Feedforward Spiking Network. IJCV, 82(3), 284-301.
  9. Gao Y., Zhang L., Wang Y. and Jiang J., (2006). Multiscale receptive field neural networks for object tracking. International Congress Series, 1291, 229- 232.
  10. Hugues, E., Guilleux, F. and Rochel, O., (2002). Contour Detection by synchronization of Integrate and Fire Neurons. LNCS. 2525, 60-69.
  11. Izhikevich, E. M., (2004). Which model to use for cortical spiking neurons?. IEEE Trans. on NN, Vol. 15, No. 5.
  12. Kunkle, D. R. and Merrigan, C., (2002). Pulsed neural networks and their application. Computer Science Dept., College of Computing and Information Sciences, Rochester Institute of Technology.
  13. Lindeberg, T., (1994). Scale-Space Theory in Computer Vision. Kluwer, Academic Publisher/Springer, Dordrecht, Netherlands.
  14. Masland, R. H., (2001). The fundamental plan of the retina. Nature Neuroscience, vol. 4, pp. 877-886.
  15. Meftah, B., Lezoray, O. and Benyettou, A., (2010). Segmentation and Edge Detection based on Spiking Neural Network Model. Neural Processing Letters. 32(2), 131-146.
  16. Middleton L. and Sivaswamy, J., (2001). Edge Detection in a Hexagonal-Image Processing Framework. Image and Vision Computing.19, pp. 1071-1081.
  17. Paugam-Moisy, H. and Bohte, S. M., (2009). Computing with spiking neuron networks. Handbook of Natural Computing. 40. Springer, Heidelberg.
  18. Vitulli R., (2002). Aliasing Effects Mitigation by Optimized Sampling Grids and Impact on Image Acquisition Chains. Geoscience and Remote Sensing Symposium, pp. 979-981.
  19. Wu, Q. X., McGinnity, M., Maguire, L., Belatreche, A. and Glackin, B., (2007). Edge Detection Based on Spiking Neural Network Model. Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence, 26-34.
Download


Paper Citation


in Harvard Style

Clogenson M., Kerr D., McGinnity M., Coleman S. and Wu Q. (2011). BIOLOGICALLY INSPIRED EDGE DETECTION USING SPIKING NEURAL NETWORKS AND HEXAGONAL IMAGES . In Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011) ISBN 978-989-8425-84-3, pages 381-384. DOI: 10.5220/0003682103810384


in Bibtex Style

@conference{ncta11,
author={Marine Clogenson and Dermot Kerr and Martin McGinnity and Sonya Coleman and Qingxiang Wu},
title={BIOLOGICALLY INSPIRED EDGE DETECTION USING SPIKING NEURAL NETWORKS AND HEXAGONAL IMAGES},
booktitle={Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)},
year={2011},
pages={381-384},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003682103810384},
isbn={978-989-8425-84-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Neural Computation Theory and Applications - Volume 1: NCTA, (IJCCI 2011)
TI - BIOLOGICALLY INSPIRED EDGE DETECTION USING SPIKING NEURAL NETWORKS AND HEXAGONAL IMAGES
SN - 978-989-8425-84-3
AU - Clogenson M.
AU - Kerr D.
AU - McGinnity M.
AU - Coleman S.
AU - Wu Q.
PY - 2011
SP - 381
EP - 384
DO - 10.5220/0003682103810384