INFORMATION RETRIEVAL IN THE SERVICE OF GENERATING NARRATIVE EXPLANATION - What we Want from GALLURA

Ephraim Nissan, Yaakov HaCohen-Kerner

2011

Abstract

Information retrieval (IR) and, all the more so, knowledge discovery (KD), do not exist in isolation: it is necessary to consider the architectural context in which they are invoked in order to fulfil given kinds of tasks. This paper discusses a retrieval-intensive context of use, whose intended output is the generation of narrative explanations in a non-bona-fide, entertainment mode subject to heavy intertextuality and strictly constrained by culture-bound poetic conventions. The GALLURA project, now in the design phase, has a multiagent architecture whose modules thoroughly require IR in order to solve specialist subtasks. By their very nature, such subtasks are best subserved by efficient IR as well as mining capabilities within large textual corpora, or networks of signifiers and lexical concepts, as well as databases of narrative themes, motifs and tale types. The state of the art in AI, NLP, story-generation, computational humour, along with IR and KD, as well as the lessons of the DARSHAN project in a domain closely related to GALLURA’s, make the latter’s goals feasible in principle.

References

  1. Baldinger, K. 1973. À propos de l'influence de la langue sur la pensée: Étymologie populaire et changement sémantique parallèle. Revue de Linguistique Romane, 37, pp. 241-273.
  2. Bex, F. 2011. Arguments, Stories and Criminal Evidence: A Formal Hybrid Theory, Law and Philosophy Series, vol. 92. Springer, Dordrecht.
  3. Braude, W. G. 1982. Midrash as deep peshat. In: S. R. Brunswick (ed.), Studies in Judaica, Karaitica and Islamica (Presented to Leon Nemoy on his Eighties Birthday). Bar-Ilan University Press, Ramat-Gan, Israel, pp. 31-38 [English].
  4. Choueka, Y. 1989a. RESPONSA: An operational fulltext retrieval system with linguistic components for large corpora. In: E.I. Cuomo (ed.), Law in Multicultural Societies, Proceedings of IALL, the International Association of Law Libraries Meeting, Jerusalem, 1985. The Hebrew University, Jerusalem, 1989, pp. 47-82.
  5. Choueka, Y. 1989b. Responsa: A full-text retrieval system with linguistic processing for a 65 million-word corpus of Jewish heritage in Hebrew. In a Special Issue on non-English Interfaces to Databases, IEEE Data Engineering, 12(4), pp. 22-31.
  6. Choueka, Y., Cohen, M., Dueck, J., Fraenkel, A.S., Slae, M. 1971. Full-text Document Retrieval: Hebrew Legal Texts (Report on the first phase of the Responsa Retrieval Project). In: M. Minker, S. Rosenfeld (eds.), Proceedings of the ACM Symposium on Information Storage and Retrieval, Maryland, 1971. Association for Computing Machinery, New York, 1971, 61-79.
  7. Choueka, Y., Fraenkel, A. S., Klein, S.T., Segal, E. 1987. Improved techniques for processing queries in full-text systems. In: C.T. Yu, C.J. van Rijsbergen (eds.), Proceedings of the Tenth Annual International ACMSIGIR Conference on Research and Development in Information Retrieval, New Orleans 1987. ACM, New York, 1987, pp. 306-315.
  8. Coates, R. 1994. Folk etymology. In: R.E. Asher (ed.), The Encyclopedia of Language and Linguistics, Pergamon Press, Oxford, Vol. 3, pp. 1267-1270.
  9. Fishbane, M., ed. 1993. The Midrashic Imagination, University of New York Press, New York.
  10. HaCohen-Kerner, Y., Mughaz, D. 2010. Estimating the birth and death years of authors of undated documents using undated citations. Proceedings of the Seventh International Conference on Natural Language Processing (IceTAL 2010), August 16-18, 2010, Reykjavik, Iceland (LNCS 6233), pp. 138-149. Springer-Verlag, Berlin.
  11. HaCohen-Kerner, Y., Avigezer, T.S.-T., Ivgi, H. 2007. The Computerized Preacher: A prototype of an automatic system that creates a short rabbinic homily [Hebrew]. B.D.D. (Bekhol Derakhekha Daehu): Journal of Torah and Scholarship (Bar-Ilan University, Ramat-Gan) 18, pp. 23-46.
  12. HaCohen-Kerner, Y., Beck, H., Yehudai, E., Rosenstein, M., Mughaz, D. 2010a. Cuisine: Classification using stylistic feature sets and/or name-based feature sets. Journal of the American Society for Information Science and Technology, 61(8), pp. 1644-1657.
  13. HaCohen-Kerner, Y., Kass, A., Peretz, A. 2010b. A Hebrew Aramaic abbreviation disambiguation system. Journal of the American Society for Information Science and Technology, 61(9), pp. 1923-1932.
  14. HaCohen-Kerner, Y., Schweitzer, N., Shoham, Y. 2010c. Automatic identification of biblical quotations in Hebrew-Aramaic documents. Int. Conf. on Knowledge Discovery and Information Retrieval (KDIR), pp. 320- 325, Oct. 2010, Valencia.
  15. Hartman, G. H., Budick, S., eds. 1986. Midrash and Literature, Yale University Press, New Haven, CT.
  16. Hirshman, M. 2006 . Aggadic midrash. Ch. 2 in: S. Safrai, Z. Safrai, J. Schwartz, P. J. Tomson (eds.), The Literature of the Sages, Second Part, Royal Van Gorcum, Assen, Netherlands, and Augsburg Fortress Press, Minneapolis, MN, pp. 107-132.
  17. Kirwin, W. 1985. Folk etymology: Remarks on linguistic solving and who does it. Lore and Language (Sheffield, U.K.), 4(1), pp. 18-24.
  18. Liu, H., Singh, P. 2002. MAKEBELIEVE: Using commonsense knowledge to generate stories. In Proc. of the 18th National Conf. on Artificial Intelligence and 14th Conf. on Innovative Applications of Artificial Intelligence, pp. 957-958.
  19. Lönneker, B., Meister, J. C., Gervás, P., Peinado, F., Mateas, M. 2005. Story generators: Models and approaches for the generation of literary artefacts. In the ACH/ALLC-2005 Conference Abstracts, Victoria, BC, Canada, June 15-18, 2005, pp. 126-133.
  20. Nissan, E. 2008. Chance vs. causality, and a taxonomy of explanations. In: M. Negrotti (ed.), Natural Chance, Artificial Chance, thematic volume of Yearbook of the Artificial, Vol. 5. Peter Lang, Basel, pp. 195-258.
  21. Nissan, E. 2011a. Computer Applications for Handling Legal Evidence, Police Investigation, and Case Argumentation. Springer, Dordrecht.
  22. Nissan, E. 2011b. A Study of Humorous Explanatory Tales. In: N. Dershowitz and E. Nissan (ed.), Language, Culture, Computation: Essays in Honour of Yaacov Choueka. Springer, Berlin, in press.
  23. Nissan, E., Weiss, H. 1994. The HyperJoseph project (2 parts). In: F. Poswick (ed.), Proc. 4th International Conference on Bible and Computers (AIBI'94), Amsterdam, August 15-18, 1994. Champion-Slatkine, Geneva & Paris, 1995, pp. 154-162 & 163-173.
  24. Peinado, F., Gervás, P. 2006. Evaluation of automatic generation of basic stories. In a special issue on Computational Creativity, New Generation Computing, 24(3), pp. 289-302.
  25. Reeves, J. 1991. Computational Morality: A Process Model of Belief Conflict and Resolution for Story Understanding, Tech. Rep. 910017, Comp. Science Dept.. Univ. of California, Los Angeles. ftp: // ftp. cs.ucla.edu/tech-report/1991-reports/910017.pdf
  26. Ritchie, G. 2004. The Linguistic Analysis of Jokes, Routledge, London.
  27. Schank, R. C., ed. 1986. Explanation Patterns: Understanding Mechanically and Creatively, Lawrence Erlbaum Associates, Hillsdale, NJ.
  28. Schank, R. C., Kass, A., Riesbeck, C. K., eds. 1994. Inside Case-Based Explanation, Erlbaum, Hillsdale, NJ.
  29. Stock, O., Strapparava, C. 2005. The act of creating humorous acronyms. Applied Artificial Intelligence, 19(2), pp. 131-151.
  30. Stock, O., Strapparava, C., Nijholt, A., eds. 2002. The April Fools' Day Workshop on Computational Humour: Proceedings of the 20th Twente Workshop on Language Technology (TWLT20), Trento, Italy, April 2002. University of Twente, The Netherlands.
  31. Strapparava, C., Valitutti, A. 2004. WordNet-Affect: An affective extension of WordNet. Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC 2004), Lisbon, May 2004, pp. 1083-1086.
  32. Waller, A., Black, R., O'Mara, D. A., Pain, H., Ritchie, G., Manurung, R. 2009. Evaluating the STANDUP pun generating software with children with cerebral palsy. ACM Transactions on Accessible Computing (TACCESS), 1(3), article no. 16, at the ACM site.
  33. Walton, D. N. 2004. Abductive Reasoning, University of Alabama Press, Tuscaloosa, Alabama.
  34. Zuckermann, G. 2000. Camouflaged Borrowing: FolkEtymological Nativization in the Service of Puristic Language Engineering, D.Phil. Dissertation in Modern Languages, University of Oxford, Oxford.
  35. Zuckermann, G. 2006. “Etymythological othering” and the power of “lexical engineering”. Ch. 16 in T. Omoniyi, J.A. Fishman (eds.), Explorations in the Sociology of Language and Religion, Benjamins, Amsterdam, pp. 237-258.
Download


Paper Citation


in Harvard Style

Nissan E. and HaCohen-Kerner Y. (2011). INFORMATION RETRIEVAL IN THE SERVICE OF GENERATING NARRATIVE EXPLANATION - What we Want from GALLURA . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011) ISBN 978-989-8425-79-9, pages 479-484. DOI: 10.5220/0003688304870492


in Bibtex Style

@conference{kdir11,
author={Ephraim Nissan and Yaakov HaCohen-Kerner},
title={INFORMATION RETRIEVAL IN THE SERVICE OF GENERATING NARRATIVE EXPLANATION - What we Want from GALLURA},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)},
year={2011},
pages={479-484},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003688304870492},
isbn={978-989-8425-79-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval - Volume 1: KDIR, (IC3K 2011)
TI - INFORMATION RETRIEVAL IN THE SERVICE OF GENERATING NARRATIVE EXPLANATION - What we Want from GALLURA
SN - 978-989-8425-79-9
AU - Nissan E.
AU - HaCohen-Kerner Y.
PY - 2011
SP - 479
EP - 484
DO - 10.5220/0003688304870492