logics is a reasonably approach to an explicit logical
handling of integrations.
5 CONCLUSIONS AND FURTHER
WORK
In the present paper we argued that a study of integra-
tions of knowledge from different knowledge sources
in an explicit propositional logical layer is a natural
approach which can be highly beneficial to enrich the
studies of the integration of knowledge in knowledge
engineering.
The proposed scenario of integration of knowl-
edge and information is not limited to the field of
knowledge engineering, but can be taken as a basis for
a general understanding of integrations in computer
science. The family of ∈
T
-logics allows for the meta-
level reasoning about integrations like knowledge in-
tegration by integrating the sets of propositions which
represent the states of affair of the underlying differ-
ent sources of knowledge. The explicit interpretation
of formulas as propositions in the ∈
T
-logic layer thus
allows for an integration which explicitely takes the
senses of the objects and the logical characteristics of
the integration, that means the relationships between
complex concepts, into account. The wide range of
different models of ∈
T
-logics allows for representing
and comparing arbitrary different ideas of integration
as any model includes its own set of denotable propo-
sitions and its own sense function which interprets the
formulas as propositions.
The presented ideas of this work can be seen as a
basis for a treatment of knowledge integrations which
extends the established regarded concepts by an ex-
plicit propositional logical layer. However, the pro-
posed ideas of a scenario of integration and its realiza-
tion in propositional logics like ∈
T
-logics does have
to be elaborated in detail, which is part of ongoing
and soon to be published work of the author. Beyond
that studies on a theoretical logical framework which
can be seen as the main attention of the work of the
author more questions emerge from a more practical
point of view. These include questions of the practical
representation of specific knowledge sources as mod-
els of certain propositional logics or the elaboration
of a real application in form of a case study.
REFERENCES
Bab, S. (2007). ∈
µ
-Logik – Eine Theorie propositionaler
Logiken. Shaker Verlag Aachen.
Bab, S., Mahr, B., and Wieczorek, T. (2008). ε-style (of) se-
mantics. In Robering, K., editor, New Approaches to
Classes and Concepts, Studies in Logic vol. 14. Col-
lege Publications.
Bab, S. and Wieczorek, T. (2010). On specific models
for ∈
T
-logics. In Bab, S. and Robering, K., editors,
Judgements and Propositions, pages 1–10. Logos Ver-
lag Berlin.
Davis, R., Shrobe, H., and Szolowits, P. (1993). What is a
knowledge representation? AI Magazine, 14:17–33.
Frege, G. (2007). Begriffsschrift, eine der arithmetischen
nachgebildete Formelsprache des reinen Denkens. Be-
griffsschrift und andere Aufs¨atze.
Frege, G. (2008).
¨
Uber Sinn und Bedeutung. Gottlob Frege:
Funktion, Begriff, Bedeutung. F¨unf logische Studien,
G¨unther Patzig (editor).
Lewitzka, S. (2009). ∈
I
: An intuitionistic logic without
fregean axiom and with predicates for truth and falsity.
Notre Dame Journal of Formal Logic, 50(3):275–301.
Mahr, B. (1993). Applications of type theory. In
Proceedings of the International Joint Conference
CAAP/FASE on Theory and Practice of Software De-
velopment, pages 343–355. Springer Verlag.
Mahr, B. (2010a). Intentionality and Modelling of Concep-
tion. In Bab, S. and Robering, K., editors, Judgements
and Propositions — Logical, Linguistic and Cognitive
Issues. Logos Verlag Berlin.
Mahr, B. (2010b). On judgements and propositions. ECE-
ASST, 26.
Mahr, B. and Bab, S. (2005). ∈
T
-Integration of Logics. In
Formal Methods in Software and Systems Modeling,
pages 204–219. Springer Verlag.
Mahr, B., Str¨ater, W., and Umbach, C. (1990). Fun-
damentals of a theory of types and declarations.
Forschungsbericht, KIT-Report 82, Technische Uni-
versit¨at Berlin.
Robering, K. (2011). Propositionen. (in print).
Searle, J. R. (2008). Sprechakte – Ein sprachphilosophis-
cher Essay. Suhrkamp Frankfurt a. M.
Str¨ater, W. (1992). ∈
T
Eine Logik erster Stufe mit Selbstre-
ferenz und totalem Wahrheitspr¨adikat. Forschungs-
bericht, KIT-Report 98. Dissertation, Technische Uni-
versit¨at Berlin.
Tarski, A. (1935). Der Wahrheitsbegriff in den formal-
isierten Sprachen. Studia Philosophica 1, pages 261–
405.
Wache, H., V¨ogele, T., Visser, U., Stuckenschmidt, H.,
Schuster, G., Neumann, H., and H¨ubner, S. (2001).
Ontology-based integration of information - a survey
of existing approaches. pages 108–117.
Zeitz, P. (2000). Parametrisierte ∈
T
-Logik: Eine Theorie
der Erweiterung abstrakter Logiken um die Konzepte
Wahrheit, Referenz und klassische Negation. Logos
Verlag Berlin. Dissertation, Technische Universit¨at
Berlin, 1999.
ON THE INTEGRATION OF KNOWLEDGE IN A PROPOSITIONAL LOGICAL LAYER
303