candidates correspond to the actual abilities and the
biography of the students. Clearly, knowing about
the internal structures of CS knowledge is also an
effective way of evaluating and designing CS
courses.
REFERENCES
Albert, D & Steiner, C. M. 2005, 'Empirical Validation of
Concept Maps: Preliminary Methodological Consider-
ations' in Proceedings of the Fifth IEEE International
Conference on Advanced Learning Technologies
(ICALT’05), ed IEEE.
Anderson, J. R. 2005, Cognitive psychology and its impli-
cations. John R. Anderson, Worth Publishers, New
York.
Anderson, L. W. 2009, A taxonomy for learning, teaching,
and assessing. A revision of Bloom's taxonomy of
educational objectives, Longman, New York.
Armstrong, D. J. 2006, 'The quarks of object-oriented
development', Commun. ACM, vol. 49, pp. 123–128.
Cordella, L. P., Foggia, P., Sansone, C. & Vento, M. 2004,
'A (sub)graph isomorphism algorithm for matching
large graphs', Pattern Analysis and Machine Intelli-
gence, IEEE Transactions on, vol. 26, no. 10, pp.
1367–1372.
Dominguez, A. K. (2010). Data Mining for Individualised
Hints in e-Learning. In Proceedings of the interna-
tional conference of educational data mining (EDM
2010). Pittsburgh .
Goldsmith, T. E. & Davenport, D. M. 1990, 'Assessing
structural similarity of graphs' in Pathfinder associa-
tive networks, Ablex Publishing Corp, pp. 75–87.
Hubwieser, P. & Mühling, A. 2011, 'What Students
(should) know about Object Oriented Programming' in
ICER’11: Proceedings of the 7th International Com-
puting Education Workshop. August 8–9, Providence,
Rhode Island, USA, ed ACM, pp. To appear.
Hubwieser, P., Spohrer, M., Steinert, M. & Voß, S. 2008,
Algorithmen, objektorientierte Programmierung,
Zustandsmodellierung. Schülerbuch - Jahrgangsstufe
10, Klett, Stuttgart.
Inokuchi, A., Washio, T. & Motoda, H. 2000, 'An Apriori-
Based Algorithm for Mining Frequent Substructures
from Graph Data'. Principles of Data Mining and
Knowledge Discovery, 4th European Conference,
PKDD 2000, Lyon, France, September 13-16, 2000,
Proceedings, eds DA Zighed, HJ Komorowski & JM
Zytkow, Springer, pp. 13–23.
Kinchin, I. M., Hay, D. B. & Adams, A. 2000, 'How a
qualitative approach to concept map analysis can be
used to aid learning by illustrating patterns of concep-
tual development', Educational Research, vol. 42, no.
1, pp. 43–57.
Madhyastha, T., & Hunt, E. (2009). Mining diagnostic
assessment data for concept similarity. Journal of
Educational Data Mining, 1(1), 72–91.
Mayring, P. 2000, Qualitative Content Analysis. Available
from: http://qualitative-research.net/fqs/fqs-e/2-00inha
lt-e.htm.
McClure, J. R., Sonak, B. & Suen, H. K. 1999, 'Concept
map assessment of classroom learning: Reliability, va-
lidity, and logistical practicality', Sci Teach, vol. 36,
pp. 475\textendash492.
Mons, B., Ashburner, M., Chichester, C., van Mulligen,
E., Weeber, M., den Dunnen, J., van Ommen, G., Mu-
sen, M., Cockerill, M., Hermjakob, H., Mons, A.,
Packer, A., Pacheco, R., Lewis, S., Berkeley, A., Mel-
ton, W., Barris, N., Wales, J., Meijssen, G., Moeller,
E., Roes, P., Borner, K. & Bairoch, A. 2008, 'Calling
on a million minds for community annotation in Wi-
kiProteins', Genome Biology, vol. 9, no. 5, pp. R89.
Mühling, A., Hubwieser, P. & Brinda, T. 2010, 'Exploring
Teachers‘ Attitudes Towards Object Oriented Model-
ling and Programming in Secondary Schools'. ICER
‘10: Proceedings of the Sixth International Workshop
on Computing Education Research, ed ACM, ACM,
New York, NY, USA, pp. 59–68.
Norman, D. A. 1983, 'Some observations on mental mod-
els' in Mental models: eds D Gentner & AL Stevens,
Lawrence Erlbaum Associates, Hillsdale, NJ, pp. 7–
14.
Pedroni, M. & Meyer, B. 2010, 'Object-Oriented Modeling
of Object-Oriented Concepts' in Teaching fundamental
concepts of informatics. 4th International Conference
on Informatics in Secondary Schools - Evolution and
Perspectives, ISSEP 2010, Zurich, Switzerland, Janu-
ary 13-15, 2010; proceedings, eds J Hromkovic, R
Královic & J Vahrenhold, Springer, Berlin, pp. 155–
169.
Romero, C., Romero, J. R., Luna, J. M., & Ventura, S.
(2010). Mining rare association rules from e-learning
data. In Proceedings of the International Conference
of Educational Data Mining (EDM 2010). Pittsburgh
(pp. 171–180).
Sanders, K., Boustedt, J., Eckerdal, A., McCartney, R.,
Moström, J. E., Thomas, L. & Zander, C. (eds.) 2008,
Student understanding of object-oriented program-
ming as expressed in concept maps, ACM, New York,
NY, USA.
Schank, R. C. & Abelson, R. P. 1977, Scripts, Plans,
Goals and Understanding: an Inquiry into Human
Knowledge Structures, L. Erlbaum, Hillsdale, NJ.
Shavelson, R. J. & Ruiz-Primo, M. A. 1999, 'On the psy-
chomentrics of assessing science understanding.' in
Assessing science understanding, eds J Mintzes, JH
Wandersee & JD Novak, Academic Press, San Diego,
pp. 304–341.
Vanides, J., Yin, Y., Tomita, M. & Ruiz-Primo Maria
Araceli 2005, 'Using Concept Maps in the Classroom',
Vol. 28, No. 8, Summer 2005, Science Scope, vol. 28,
no. 8, pp. 27–31.
KDIR 2011 - International Conference on Knowledge Discovery and Information Retrieval
364