Reusable Software Units Integration Knowledge in a
Distributed Development Environment

M. Zinn!, K. P. Fischer-Hellmarth A. Schuetté and A. D. Phippeh

LUniversity of Plymouth, Plymouth, U.K.
2University of Applied Science Darmstadt, Darmstadt, Gewyia

Abstract. Today's software units (classes, components and servieggiire
large amounts of information during their development agelthat can be docu-
mented for future reference, like documentation, multiradites, specification,
and models. The availability of certain information, folaexple documentation,
is one of the factors that determines the capabilities oftaespecially by reusing
it. Additional information is necessary and essential fog success of the en-
tire development process when applying certain procedaders, like Rational
Unified Process (RUP). Acquiring these units and their aanigeimportant for
reuse. However, this causes a problem in the area of glolmglecation. Cur-
rently, approaches are missing that deal with softwareerguslistributed soft-
ware reuse scenarios. Especially the problem of missingvlatlye about inte-
gration of reusable software units in these scenarios haget®een addressed.
This knowledge is also an important factor for reuse anderéesisions. As a re-
sult software development teams locate at different looatimy have problem to
integrate exchanged reusable software units. This papeusies the challenges
of integration in distributed reuse scenarios by focusingo industrial example
and create a model extension for a existing reuse systerm Assalt integration
of reusable software units can be done remotely withoutéitessary integration
knowledge.

1 Introduction

In object-oriented software development, various unitsofleling are used. Typical
units are classes, components, and services [11]. Evetytyp@ provides a certain
amount of information that is be used based on their undegligchnologies, like ser-
vice description, documentation, or models [14]. In thepscof this paper, a compo-
nent is a deployed component. There are two important prodldevelopment issues
related to a general view of these different units [11] areldhbcision to reuse a com-
ponent based on the available information [3]. SoftwaredeeEnvironments (SRE)
support software developers by addressing these problEémsgeneral idea is to have
three important functions in one combined environmentseaepositories, automatic
integration of software units, and the searching for thestsuCurrent Integrated De-
velopment Environments (IDEs) are SRE systems. Howevee ndthese approaches
completely fulfill the requirement of SREs to include all étions. [2]. Most of these

* The authors would like to thank the French company Schnéitksatric for providing infor-
mation about distributed existing software engineerirenscios.

Zinn M., P. Fischer-Hellmann K., Schuette A. and D. Phippen A..

Reusable Software Units Integration Knowledge in a Distributed Development Environment.

DOI: 10.5220/0003699000240035

In Proceedings of the 2nd International Workshop on Software Knowledge (SKY-2011), pages 24-35
ISBN: 978-989-8425-82-9

Copyright ¢ 2011 SCITEPRESS (Science and Technology Publications, Lda.)

25

SRE systems support the integration of information in a ifigelcenvironment by us-
ing extensions that can directly communicate to a SRE sy&egnEclipse and Visual
Studio). These functions can be used in distributed anddismibuted scenarios. Typi-
cally, in such a scenario, the decision maker, the persondgbimes to reuse a specific
software unit, is the same as the integrator, implementiege¢use. However, there are
scenarios in which the decision maker and the integratan@irthe same person. In the
scope of this paper this is called a distributed scenariadisz the individuals can be
located in different locations and differ in their domaireapertise. Typically, software
architects are this kind of decision makers in software graent [4]. Figure 1 shows
these focused scenarios:

Location: India
Location: India

Software unit Software unit €y
repository repository ﬂ
Location: German y
Integrator and
| — decisionma ker — Integrator

Direct

access (. —
S 7
4\ \
N - Decision maker é 3
Location: France Location: France ~ =
Integrator and
Integrator

Location: USA|

decision maker
Location: USA

Non-distributed scenario distributed scenario

Fig. 1. Distributed and Non-Distributed Scenario.

The authors of this paper hypothesize that the reuse of ardtunits in a distributed
scenario has a negative influence on the reuse. These reeigapiacts can be mitigated
by providing an integration model and a service based conwatian architecture to
achieve the integration. Challenges of the distributedwsoe reuse scenario will be
discussed in this paper. The aim of this paper is to providelatien for distributed
software reuse scenarios that can be used to support seftheaelopment. This is
achieved by extending an existing software reuse architetd include an integration
model. This solution is the result of research into Sertiased Software Construction
Process (SSCP) incorporated into the field of SRE and theadtunit reuse with lim-
ited knowledge. This paper’s heuristic value lies withie #nhancements to existing
SOA-based (Service Oriented Architecture) architect(®CP System) by support-
ing the handling of units of modeling, like classes, compusgeand services, for use
by decision makers with integration tasks. The paper caledwvith the fact that sup-
porting distributed scenarios can be done with an integmagixtension of the SSCP
system.

2 Two Problems in a Distributed Reuse Scenario

2.1 Problem Identification

Distributed software development scenarios cause sgaablems in Software Archi-
tecture, Engineering Processes, and R&D OrganisatiorEdfecially the sharing of
reusable software units between teams have a deep impaast:n ¢

26

“A problem observed |[...] is that when decoupling betweeneshsoftware assets is
insufficiently achieved is excessive coordination cosmeen teams. One might expect
that alignment is needed at the road mapping level and tdaicextent at the planning
level. When teams need to closely cooperate during iterg@ti@nning and have a need
to exchange intermediate developer releases between thaing iterations in order
to guarantee interoperability, the coordination cost @ret asset teams is starting to
significantly affect efficiency[1]

To get an impression of the problems that may exist in a disted reuse scenario,
it is helpful to observe an real life industrial scenarior Fas, data from the company
Schneider Electric is used [8]. Information about usednieétgy and methodologies is
provided by project leaders of Schneider Electric): Satheeklectric is a French com-
pany that focuses on the automation and energy industrepldying approximately
130,000 people, divided into over 100 organisations, Scdené&lectric is divided into
in 5 different domains: Building, Industry, Power, IT, anddfgy. Each domain has
locations all over the world in many different countriesebrch of these domains, soft-
ware development is an important part of the work and theigdeal/software solutions.
Typical software development areas are server-, deskiggh-, and embedded device
applications. Various locations work together to fulfil #keand provide a software
solution. Thereby, typical units of modelling (like classeomponents, and services),
implemented in different technologies, are used (like .NETJava). Schneider Electric
uses the typical component worlds (see [10]). Each locats&s its own repository for
these units. However, the repository types and their ustigesd The authors analysed
6 software development projects of Schneider Electric f2006 to 2010 that uses
a distributed scenario (limited to two locations) evalogtfour different aspects: (1)
Which partner is developing the Software?, (2) Which parteenaking architectural
decisions?, (3) Which partner is selecting reusable soéwaits?, and Which partner
is integrating the selected reusable software units?

The result of this analysis can be describes as follows: \{&n€1 and Q2) The
characteristics of the analysed scenario include thatdh@@r who selects the reusable
components is not the partner who is doing software devetmpnMost time Indian
software development teams were responsible and team ftloen countries are the
software designer making architecture decisions.(AnQ®&}Also selecting of reusable
software units, like corporate identity or login comporssate selected by the non de-
veloper teams. (Answer Q4) In each analysed project thgratiag task was done by
the software development team. The previous analysis saaligtribution pattern. The
development task and the development decisions are doneplayated teams located
in different countries. Such patterns include differemtgems. In the following section
the problem of accessibility and integration will be disser$ and analysed.

2.2 Accessibility Problem

The accessibility problem for software unit reuse can bdaémed using the Software
Reuse Information Demand Model (SRID) [13], that is basedtifiormation Demand
Model [6]. From the SRID point of view of information depenuis five factors :

27

— Objective information demand: This is the entire (theaad)iamount of informa-

tion that can solve a problem.

Subjective information demand: This is all informationtttize user believes can
solve the problem.

Information provision: This is all information that is agsible.

Information request: This is a search request the user flatesito find information

relevant for solving the problem.

Real level of information: This is all information that isrcect, is available to the
user, is accessible, and is requested by the user.

All these 5 factors are part of the Software Reuse Informdliemand model (see
Figure 2). The general problem of information demand atieesause the real level of
information is a subset that is limited by the user’s abiidyormulate the request (Real
level of information). Figure 2 shows the relationship begw the five factors.

Objective
Information Subjective Information
Demand {OID} Demand (SID}
/
Information Query
Q)
Actual
Information

State {AIS)

Information Provision {IP}

Fig. 2. SRID model [13] (based on [6]).

In the area of accessibility this problem can be identifie@mvh user has to search
for a reusable software unit in an external environmentsMig knowledge about a
providing system (repository) limits the information reti[9]. The user is less able
to formulate a request. The severity of this problem comas fmost users being ju-
nior, inexperienced software developers [9]. Another asitdlity problem occurs when
the user has no access to the software reuse environmentibfeatocation. This is
an information demand problem based on infrastructureiregpents. In the case of
Schneider Electric, both accessibility problems occur.

2.3 Integration Problem

A user who wishes to integrate a reusable software unit Hasaw about the dependen-
cies, structure, configuration and technology of the urgpdg€ially configuration has
been a problem for some years [7]. This limits the overlagpirea between subjective
and objective information demand (See Figure 2). The réswtstrong limitation of
the real level of information. This is demonstrated in thikofeing simple example: In
the initial situation the reusable component library faadivery device profile based
web service is a .Net library calledDiscovery.dll. It uses another reference called
'DPWS.dlthat is an unmanaged .NET library and includes some spéditifaries that
are used by thBiscovery.dlffile. A configuration file is required Config.xml) that has

28

to be placed in the same directory as Biscovery.dlffile. By using Visual Studio, the
user has to perform following integration steps to createdétup:

1. add theDiscovery.dllas a reference, because of the user will require functions,
structure, user interfaces or data from this library.

2. write a script to copypPWS.dllin the release directory after compiling, because
of the unmanaged libraries can not be easily managed by the ID

3. add theConfig.xmlto this project and set the copy attribute t©dpy if newer,
because of this file contains settings that will be used duwtimtime.

This example illustrates the complexity of software untegration for a specific
environment. If the user is unaware of these integratiopsstine process is likely to be
time consuming. Therefore, the problem of integration isrtow these additional setup
steps. Each reusable unit needs further steps for integrai a distributed scenario the
individual who is aware of these steps cannot be in a diftdoeation. In this case the
integration problemis also a problem of information demand

3 Solution Approach

Approaching the problems involves two different modelse Tinst is an integration
model and the second an architecture extension to supstribdted scenarios. The
model, the architecture, and the combination to suppatribliged software unit reuse,
constitutes the scientific contribution of this paper.

3.1 An Integration Model as Reuse Model Extension

In the context of the underlying research, the authors dgeel an ontology to the

subject 'Service-based Software Construction Procesw’der to counteract the prob-
lems experienced in software unit reuse [14]. Also an emvirent was build using this

ontology and enabling users to do software unit reuse (fogusearch, adaption, and
IDE integration of units) without the complete necessargwdedge. The used ontol-

ogy serves only the unified description of units of modelljcigasses, components and
services). This includes the description of technologiaats (components, services,
etc.).

The ontology consists of 4 parts. Part 1 shows the accesstoritology: The
problem-solution approach’ Part 2 relates to 'generalress information’ about the
solution (e.g., manufacturer, name, and author). Part &ites the solution as a tech-
nical unit (e.g., a type of unit, a technology, a file formatffiles). In Part 4 the technical
contents are described thereby explaining a semanticlsapproach that is discussed
in a previous publication (See [15]). If an instance of théotogy is generated (e.g.,
by the registration of a newly developed unit), the user bagpecify information that
is stored in the appropriate area of the ontology. The dataatsn be entered auto-
matically into Part 3 of the ontology. This is possible astdehnical data is generally
detectable (such as file size, file type, file name, and teclydl Nevertheless, the
data from other sections of the ontology is not automatiadditectable. The ontology

29

describes services, components, and classes in the samandabstracts them into
units (unit view). Based on this abstraction, the ontolod/lve extended by collection

requirements of different use cases (called views). Fi§uwtemonstrates this relation-
ship.

Monitoring, Adaption,

Integration ,Management, Search/Find, Community,

Problem/Solution, ...

Description

Extension System View Business View

Description
Base

m Solution Solves (min 1) bl
IsCreatedBy o } IsSolvedBy oble
_Part 1| Part2 - (min1)

Part 4| Part 3

Readable

Heslpool = \% -
[A\
(oot
]

lproperties’|

[Typical file

IsEqual

“SubClassof

Real File } Data LV
Is
Y i Envronment
SubClassOf SubClassOf SubClassOf
S o =
Content IsChangabOé'”/ s sComplete § -
Def :] | Xmi:bool || Xml:bool " Xml:Bool H Xml:Bool | [¢ }Ja

hasSearchContentDescription

Fig. 4. SSCP Model Section 3 - Technical Descriptions.

The following section displays and further describes mioaebf the integration.
This corresponds to Part 3 of the ontology. Moreover, it isued on the problems
indicated in Section 2. Figure 4 shows Part 3 of the ontologg simplified way, de-
scribing the technical building of a unit. The 'UOM’ entity the main part of the on-
tology. This entity is linked with the 'Unit’ entity on equédrms. 'Unit’ is described in
multiple ways, the first being the technical presentatiavkbn down into four smaller
entities ('Snippet’ for code units, 'Service’ for servibased units, 'Class’ for object-
oriented class units, and 'Component’ for deployed sofévemponents). The file con-
tent of a unit can be classified as either machine-readaliiaran-readable content.
The machine-readable content is a set of files (the 'Fileitynthat can be further
classified by their usage content (code fragment, clasaypitode, and service infor-
mation). These usage entities are linked to the technieskmtation. The other content
of a unit is shown by the human readable content entity. Tiisyerepresents files that
are further classified by the presentation mode (documeédepy audio, and picture).
The final piece of the unit is the technology description vitnich a simple approach
has been selected. The 'Unit’ entity has a relationship ¢oEmvironment’ entity that
is described through the 'Platform’, 'Technology’ and 'Bramming language charac-
teristic’. For example, a component may depend on the .Metdwork (based on the
32-bit variety) and the C# programming language.

30

A unit has been represented as a common description of s|lassmponents, and
services and will now be extended with integration inforioat The 'Real File’ node
in the base semantic model may have instances of integriscriptions. Each node
in the semantic model contains a unique identifier (ID) andemélly name property.
This is not sketched in Figure 5. Three questions have to b&ened in relation to unit
integration (Questions are defined from the result of the pmment analysis of [5]):
(1) What is the target platform? (2) How should the unit begnated? (3) What is the
scope of the unit?

The target platform has to be validated before integratamnpgroceed. This is crit-
ical, as the current research of the extension model inslypdets that are platform
dependent. A platform is marked by the 'IDE" node that hadatien to the ’environ-
ment’ mode of the base model. The meaning of this relatiohas the 'IDE’ shows
which kind of environment can be used to host, build, and eteea software unit. The
'Real File’ node has an indirect relation (given by the baselet) to an'Environment’
node. This relation describes the appropriate environmeense with this unit. From
the semantic point of view, the 'Environment’ node can belusevalidate the compat-
ibility between a software unit and the platform of the IDBrExample, a class file
that requires the .NET framework is generally not compatibith a Java-based envi-
ronment (such as Eclipse). The process of integration cdtubtrated by detailing the
various integration patterns of the Visual Studio-and EBdipPls. The following con-
cepts are necessary from the view of the authors and aredein both environments
Visual Studio.NET and Eclipse (handling in the two envir@mts differs):

— OnlyCopy: This copies a file without referencing it in the ig@n tree of the
project. This is necessary for second level dependenciesith not controlled by
the IDE environment.

— WebReference: This marks a file as a web reference. Difftipérd utilize different
methods to manage this information. For example, VisualiStoan use a WSDL
file to create a reference to a web service that is based omthesponding WSDL
description.

— Reference: This copies a file and includes it in the solutiea bf the project. This
is a traditional reference that can be included or imporiéds is necessary for
managing the dependencies of a unit.

— DoNotCopy: This prevents a file from being transferred inforaject’s environ-
ment. All files a unit includes are not necessarily requirgdhe IDE (e.g., docu-
mentation).

— InsertAsText: This flags the content of a file to be treateceaswhen loaded into
the IDE. This is useful for code references (using or impant) code snippets.

— CopyAsResource: This flags a file to be used as a resource endés it in the
project (e.g., configuration files).

The scope of the unit is used to create integration pack&gesnstance, a library
refers to another library as a dependency, so both libraiaes to be delivered. This
relation can be modelled by referring an “Integration pgeKanode to the global “unit”
node. A unitis now part of an integration package. Each cfelpackages includes files
with integration descriptions that are related to an instanf the integration package.

31

(indirect)
i lement

{ Unit Characteristic Platform

, T Tec.
"o .
i, Environment
e

AvailableRuntimeEnvironments

Covem]

Incljudes

Base Unit
Description

sse(2ans

Technolog
y

e}

c c - -
] ion descripti Includes _| K
5% Integration description > Integration package 5| WebReference
&3
£8 felaes ;
€ s DoNetC
: oNotCol
Includes i
2 > InsertAsText
Q
5| CopyAsRessource
- & Environment &
FileElement b=
Class
I
= Fields 1 SUDTYpe ‘
® Fields
oD ;
= Properties Ciass {0 Nome stringType.
@ Technology
® Fields
' Depe ncytype S properties
= Extension i !
P FileContent ‘ i ‘ 2 Environment IntegrationPatt... ‘
= oune ||| > 7 e
= IntegrationPackageld
] T T Integ g
3 > F Name GnlyCopy
£ integationDes. 2 oaner WebReference
2 OriginalPath = (g - Reference
5 stringType I
2 PackagelD L DoNotCop,
2 RelPath Systemfile

CopylnVs
InsertText

Fig. 5. Integration model extension of Figure 4 (top) and data medeétion.

Figure 5 shows a model integration extension in relatiofnwie normal unit descrip-
tion.

3.2 Architecture Extension

In a previous publication, [12] an architecture of a senbesed software construction
CASE- tool was sketched. Figure 6 shows an overview of théscéled architecture:

Third Partie
Integration Plugins

Id

Server

suisn
uofEslUnWWOD
suiBn|d

emantic
Datamodel

Fig. 6. Communication Architecture extended version of [12].

uojjeiBaju|
Aoy jsoday

The architecture is used to implement a distributed systahdeals with the un-
derlying topic of missing knowledge in software reuse (seetiSn 1). It is capable
of integrating existing software unit repositories anddiaa them within the seman-
tic model. The server side of this architecture providefediit functions like search,
management, transformation, and deployment of softwaits.udn the client side a
management client and an integration client are sketclmedomtrast to the manage-
ment client, the development client does not influence ttedaats (groups of software
units with the same business context), such as the deletian artefact or software

32

unit on the server. Besides searching for artefacts or wfitsodelling, the develop-
ment client is responsible for the transformation and thegration of transformation
results into the current development project. In this dbsdrscenario the integration
client communicates directly to the server. This belonga tmn-distributed scenario.
The user searches, selects, and integrates software nioitthée project, using the in-
tegration client which is hosted in the IDE (or the host sygteThis architecture will
be extended by adding an integration plugin next tolleploymentnd Transforma-
tion. Analysing the scenarious of Figure 7 two distributed sdesa are identified by
the authors using the infrastructure given by the architeaf Figure 6Light-weight
scenario: The integration client receives metadata from the manageatient about
the unit(s) that are to be integrated. The integration tieable to do a specific search
on the server with a single unit as a search restgavy-weight scenario:The man-
agement client sends the integration information direictihe integration client; there
is no need for the integration client to communicate withsbever.

The two scenarios differ in the amount of data which has todobanged between
the management client and the integration client. In thedigeight scenario, the man-
agement client sends only metadata to the integrationtclidrerefore, the integration
client can perform the search. In the other scenario, afl dequired for integration is
sent. Figure 7 illustrates both scenarios:

Search and receive

Integration jrtegrgiion date Integration
Client Client
Send
Step2|
Server tep Integration data
7 7
step1 [Managemen Heavy-Weight
Search and Receive [Searchand ClientClient Scenario

Metadata Receive
Integrationdata

Send

Step2
Metadata ep

Light-Weight
Scenario

Managemett
Client

Fig. 7. Light- and Heavy-weight scenario.

Based on the integration extension for the semantic model $&ction 3.1) a data
model can be created for communications. [12] shows an XMécdgtion of data
entities that is used in SOAP based communication betwdentgland the server.
Figure 5 shows the data model that is used for integration.

Based on the light- and heavy-weight scenarios, a servicéhéintegration client
can easily be defined. The light-weight scenario involvesititegration client requir-
ing the meta data and the ID of the integration package of tiie(see Figure 5).
A unit includes all references to file elements, allowing dfient to request specific
information about the unit from the server. The heavy-weggtenario requires the
integration client to know a set of integration informaticrherefore, all files and
an ID for an integration package is required which describesintegration of the
files (see Figure 5). An web service interface supportindp lsosenarios (based on the
data model of Figure 4) may described as into two operati@etintegrationDatal -
ightWeigth(Guid serverID, Guid artefactiID, UOM unit, GuiktegrationPackagelD)
and GetIntegrationDataHeavyWeigth(FileElement[] setOégrtationFiles, Guid inte-
grationPackagelD)

33

4 Example Scenario Discussion

As discussed in Section 3, the paper focuses on the probleacsessibility and inte-
gration. Section 4 now addresses a definition of a problemoggp. The relationship
between both discussions can be demonstrated with a siropiprehensive example.
Given the scenario of Schneider Electric (see Section 8b)teams situated in dif-
ferent locations (French and India) are working togetheaoftware development
project. The French team is defining the architecture anskfeeting existing software
units that are developed by the same team. The Indian teagspsmsible for the real
implementation and integration (see Figurelddegration Problem: The team in India
has no information about the structure and the dependeatibe reusable software
units. Learning to integrate these units would take a c@malile amount of time. By
using the focused architecture and integration model ofi@e8, the team can use the
integration description for automatic or manual integratiAs a result, the integration
team needs less knowledge about the integration of a spemifi@ble unit. However,
this is only possible if integration descriptions are aaklié. So the French team have
to insert the information in the SSCP environment. But onig éime.Accessibility
Problem: The architecture extension discussed in Section 3 allogd-tench team
to send information to the team in India. They may send oniy meta-information
(light-weight scenario) or they may send the complete uestcdiption including all in-
formation for integration (heavy-weight scenario). In fiist case, the Indian team has
information about the unit, but they have to connect and hige¢pository tool of the
French team. This only solves one a part of the accessipildiglem, because this team
has to know how to access the repository system. They arevieoyable to formulate
a query for this system. In the second case, the Indian teandicectly integrate the
unit without accessing the repository tool (see Figure h)sTesult is very important.
The Indian team does not need to access this repository.cessibility problem de-
scribed in Section 3 can be described by the questions "W éne repository?’, 'How
to access it?’, and 'How to use it'. At this point the Indiaatedoes not need to handle
the repository because of the other team is doing this. Assuiltrthe different question
does not occur.

Another interesting result is reuse of this integrationwlealge. After the French
team added the knowledge to the SSCP system. it is reusahteydtme. Different
teams located around the world can be supported.

The example discussion shows that both scenarios (lighhaady-weight) may be
resolved by the solution described in Section 3. Howeverdépends on the availabil-
ity of an integration model and the distributed scenarioge.u

5 Conclusions

This paper demonstrates the problems of accessibilityrgedration when using a dis-
tributed industrial scenario. This scenario deals withjguts that reuse software units
and is implemented by two teams in different locations. Asddility is a problem if one
team requires access to the repository system of anotharvgtout having knowl-
edge of the tool. Accessibility is also a problem, if therenésaccess to a repository

34

system. Integration becomes a problem if the integratiamthas no knowledge about
the structure and dependencies of the reusable software\lliroblems are based on
missing information. The result of these problems is a negatfluence on software
unit reuse (as it may increase integration time, etc.). ihistrates the importance of
information in software unit reuse. A described problemrapph uses an extended
semantic model that describes different software unitssggs, components, and ser-
vices) in a unified way. This extension describes data thatésled to integrate Studio
and Eclipse. Based on this, a distributed architecture offtavare reuse environment
was extended to solve the discussed problems (accegsduilit integration). The ac-
cessibility problem is solved by using the architecturegbtfe integration information
without the need of connecting to a repository system. Ttegination problem is solved
by providing the integration information as part of the des®n of the reusable soft-
ware unit. The model combined with the architecture is thecdbed novelty of this
paper. This paper arrives at the conclusion, that the diecligccessibility and integra-
tion problems can be solved by providing the correct metarmation and technical
infrastructure to deliver the information. Integrationrefisable software units should
not need expert knowledge. However, this paper only disaussution. The created
model and architecture extension should be tested in aiadalitcase study by ad-
dressing the advantages for software developers in morgleardistributed scenarios.

References

1. Jan Bosch and Petra Bosch-Sijtsema. From integrationrgpasition: On the impact of
software product lines, global development and ecosystelosrnal of Systems and Soft-
ware, 83(1):67-76, 2010.

2. Vinicius C. Garcia, Eduardo S. de Almeida, Liana B. Lish&kexandre C. Martins, Silvio
R. L. Meira, Daniel Lucredio, and Renata P. de M. Fortes. Tdwacode search engine based
on the State-of-Art and practice. In 2006 13th Asia Pacifitvi&are Engineering Conference
(APSEC’06), pages 61-70, Bangalore, India, 2006.

3. Slinger Jansen, Sjaak Brinkkemper, lvo Hunink, and Ceemir. Pragmatic and oppor-
tunistic reuse in innovative start-up companies. |EEE&afe, 25(6):42-49, 2008.

4. Philippe Kruchten, Rafael Capilla, and Juan Carlos Du€&hse decision view’s role in soft-
ware architecture practice. |IEEE Software, 26(2):36—8292

5. Jingyue Li, Reidar Conradi, Christian Bunse, Marco Tauoh, Odd Petter N. Slyngstad, and
Maurizio Morisio. Development with Off-the-Shelf compants: 10 facts. IEEE Software,
26(2):80-87, 2009.

6. Arnold Picot. Die grenzenlose Unternehmung: Informatidrganisation und Management
Lehrbuch zur Unternehmensfuehrung im InformationszeitaGabler, Wiesbaden, neuaufl.
edition, 2003.

7. Marcello Rosa, Wil M. P. Aalst, Marlon Dumas, and Arthur Ml ter Hofstede.
Questionnaire-based variability modeling for system cpmfition. Software & Systems
Modeling, 8(2):251-274, 2008.

8. Schneider-Electric. Schneider-Electric website.:htipvw.schneider-electric.com, Septem-
ber 2010.

9. Sajjan G. Shiva and Lubna Abou Shala. Software reuse:drRdsand practice. In Fourth
International Conference on Information Technology (ITNG, pages 603-609, Las Vegas,
NV, USA, 2007.

10.

11.

12.

13.

14.

15.

35

Clemens Szyperski. Component software: beyond objgetted programming. ACM Press
Addison-Wesley, New York, London, Boston, 2nd ed., 2002.

G. Wang and C. K. Fung. Architecture paradigms and thdiluénces and impacts on
component-based software systems. In 37th Annual Hawtgrrational Conference on
System Sciences, 2004. Proceedings of the, pages 272-28%|dhd, Hawaii, 2004.

M. Zinn, K. P. Fischer-Hellmann, and A. D. Phippen. Depehent of a CASE tool for the

service based software construction. pages 134-144, Bi2009. Centre for Information

Security and Network Research.

M. Zinn, A. Schuette K. P. Fischer-Hellmann, and A. D fplein. Information demand model
for software unit reuse. In The Proceedings of the 20th hatiional Conference on Software
Engineering and Data Engineering, pages 32—39, Las Vegas 2D11.

M. Zinn, G. Turetschek, and A. D. Phippen. Definition ditware construction artefacts for
software construction. pages 79-91, Plymouth, 2008. €datrinformation Security and

Network Research.

Marcus Zinn, K. P. Fischer-Hellmann, and Alois SchueEanding reusable units of mod-
elling - an ontology approach. In Proceedings of the 8thriragonal Network Conference

(INC'2010), pages 377—-386, Heidelberg, July 2010.

