A STEPWISE PROCEDURE TO SELECT VARIABLES IN A FUZZY LEAST SQUARE REGRESSION MODEL

Francesco Campobasso, Annarita Fanizzi

2011

Abstract

Fuzzy regression techniques can be used to fit fuzzy data into a regression model. Diamond treated the case of a simple model introducing a metrics into the space of triangular fuzzy numbers. In previous works we provided some theoretical results about the estimates of a multiple regression model with a non-fuzzy intercept; in this paper we show how the sum of squares of the dependent variable can be decomposed in exactly the same way as the classical OLS estimation procedure only when the intercept is fuzzy asymmetric. Such a decomposition allows us to introduce a stepwise procedure which simplifies, in terms of computational, the identification of the most significant independent variables in the model.

References

  1. Bilancia, M., Campobasso, F., Fanizzi, A., 2010. The pricing of risky securities in a Fuzzy Least Square Regression model. In Advances in Data Analysis and Classification 2010. Springer Berlin-Heidelberg-New York,.
  2. Campobasso, F., Fanizzi, A., Tarantini, M., 2009. Some results on a multivariate generalization of the Fuzzy Least Square Regression. In Proceedings of the International Conference on Fuzzy Computation, Madeira.
  3. Campobasso, F., Fanizzi, A., 2011. A Fuzzy Approach To The Least Squares Regression Model With A Symmetric Fuzzy Intercept. In Proceedings of the 14th Applied Stochastic Model and Data Analysis Coinference, Roma.
  4. Campobasso, F., Perchinunno, P., Fanizzi, A., 2008. Homogenous Urban Poverty Clusters within the city of Bari. In Lecture Notes in Computer Science ICCSA 2008. Springer.
  5. Diamond, P. M., 1988. Fuzzy Least Square. In Information Sciences.
  6. Kao, C., Chyu, C. L., 2003. Least-squares estimates in fuzzy regression analysis. In European Journal of Operational Research.
  7. Montrone, S., Campobasso, F., Perchinunno, P., Fanizzi, A., 2011. A Fuzzy Approach to the Small Area Estimation of Poverty in Italy. In Advances in Intelligent Decision Technologies - Proceedings of the Second KES International Symposium IDT 2010, Springer.
  8. Montrone, S., Campobasso, F., Perchinunno, P., Fanizzi, A., 2011. An Analysis of Poverty in Italy through a fuzzy regression model. In Lecture Notes in Computer Science ICCSA 2011, Springer.
  9. Montrone, S., Perchinunno, P., Di giuro, A., Torre, C. M., Rotondo, F., 2011. Identification of hot spot of social and housing difficulty in urban areas. In Lecture Notes in Computer Science ICCSA 2011, Springer.
  10. Takemura, K., 2005. Fuzzy least squares regression analysis for social judgment study. In Journal of Advanced Intelligent Computing and Intelligent Informatics.
Download


Paper Citation


in Harvard Style

Campobasso F. and Fanizzi A. (2011). A STEPWISE PROCEDURE TO SELECT VARIABLES IN A FUZZY LEAST SQUARE REGRESSION MODEL . In Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2011) ISBN 978-989-8425-83-6, pages 417-426. DOI: 10.5220/0003720504170426


in Bibtex Style

@conference{fcta11,
author={Francesco Campobasso and Annarita Fanizzi},
title={A STEPWISE PROCEDURE TO SELECT VARIABLES IN A FUZZY LEAST SQUARE REGRESSION MODEL},
booktitle={Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2011)},
year={2011},
pages={417-426},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003720504170426},
isbn={978-989-8425-83-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Evolutionary Computation Theory and Applications - Volume 1: FCTA, (IJCCI 2011)
TI - A STEPWISE PROCEDURE TO SELECT VARIABLES IN A FUZZY LEAST SQUARE REGRESSION MODEL
SN - 978-989-8425-83-6
AU - Campobasso F.
AU - Fanizzi A.
PY - 2011
SP - 417
EP - 426
DO - 10.5220/0003720504170426