REFERENCES
Ang, A. H. S., and Tang, W. H. (2007). Probability concepts
in Engineering. Emphasis on Applications to Civil and
Environmental Engineering, Wiley.
Ahn, H. S., Righter, R., and Shanthikumar, J. G. (2005).
Staffing decisions for heterogeneous workers with
turnover. Math Meth Oper Res, 62, 499-514.
Atakan, A. E. (2003). Stochastic convexity in dynamic pro-
gramming. Economic Theory, 22, 447-455.
Chang, C-S., Chao, X. L., Pinedo, M., and Shanthikumar,
JG. (1991). Stochastic convexity for multidimensional
processes and applications. IEEE Transactions Autom
Control, 36, 1347-1355.
Chang, C-S., Shanthikumar, J. G., and Yao, D. D. (1994).
Stochastic convexity and stochastic majorization. In:
Stochastic Modeling and Analysis of Manufacturing
Systems. Eds. DD. Yao. Springer-Verlag, Series on
Operations Research.
Chang, C-S., and Yao, D. D. (1990). Rearrangement, Ma-
jorization and Stochastic Scheduling. Math Oper Res,
18, 658-684.
Chao, X., and Luh, H. P. (2004). A stochastic directional
convexity result and its applications in comparison of
queues. Queueing Systems, 48, 399-419.
Crow, E. L., and Shimizu, K. (1988). Lognormal distribu-
tions: Theory and Applications, CRC Press.
Denuit, M., Lefvre, C. and Utev, S. (1999). Generalized
stochastic convexity and stochastic orderings of mix-
tures. Prob Eng Info Sci, 13, 275 -291.
Denuit, M., and Scaillet, O. (2004). Nonparametric tests
for positive quadrant dependence. J Financ Econo-
metrics, 2, 389-413
Escudero, L., and Ortega, E. M. (2008). Actuarial com-
parisons for aggregate claims with randomly right-
truncated claims. Insur Math Econ, 43, 255-262.
Escudero, L., Ortega, E. M., and Alonso, J. (2010). Vari-
ability comparisons for some mixture models with
stochastic environments in biosciences and engineer-
ing. Stoch Envir Res Risk Assess, 24, 199-209.
Fernandez-Ponce, J. M., Ortega, E. M., and Pellerey, F.
(2008a). Convex comparisons for random sums in
random environments and applications. Probab Eng
Inform Sci, 22, 389-413.
Fernandez-Ponce, J. M., Ortega, E. M., and Pellerey, F.
(2008b). A note on bisexual Galton-Watson branching
processes in random environments. Scientiae Mathe-
maticae Japonicae, 67, 183-196.
Gallego, G., Yao, D., and Moon, I. (1993). Optimal con-
trol of a manufacturing process that involves trial runs.
Manag Sci 39, 1499-1505
Huberman, B. and Adamic, L. (1999). Growth Dynamics
of the World Wide Web. Nature, 401, 131
Huberman, B. and Adamic, L. (2000). The nature of mar-
kets in theWorld WideWeb. Quat J Econ Commerce,
1, 5-12.
Hull, J. C. (2002). Options, Futures and Other Derivatives.
Prentice Hall.
Joe, H. (1997). Multivariate Models and Dependence Con-
cepts. Chapman and Hall, London.
Kim, H., and Park, S. (1999). Optimality of the symmetric
workload allocation in a single server flow line sys-
tem. Manag Sci 45, 449-451
Kulik, R., and Szekli, R. (2005). Dependence orderings for
some functionals of multivariate point processes. J
Mult Analysis, 92, 145-173.
Makowski, A. M., and Philips, T. K. (1992). Stochastic con-
vexity of sums of i.i.d. non-negative random variables,
with applications. J Appl Prob, 29, 156-167.
Marinacci, M., and Montrucchio, L. (2005). Ultramodular
functions. Math Oper Res, 30, 311-332.
Marshall, A. W., and Olkin, I. (1979). Inequalities: Theory
of Majorization and its Applications, Academic Press,
New York.
Meester, L. E., and Shanthikumar, J. G. (1993). Regularity
of stochastic processes. A theory based on directional
convexity. Probab Eng Inform Sci, 7, 343-360.
Meester, L. E., and Shanthikumar, J. G. (1999). Stochastic
convexity on a general space. Math Oper Res, 24,
472-494.
Mitzenmacher, M. (2004). A brief history of generative
models for power law and lognormal distributions. In-
ternet Math, 1, 226-251
Miyoshi, N. (2004). A note on bounds and monotonicity of
spatial stationary Cox shot noises. Probab Eng Inform
Sci, 18, 561-571.
Miyoshi, N., and Rolski, T. (2004). Ross type conjectures
on monotonicity of queues. Austr New Zealand J Stat,
46, 121-132.
Muller, A. and Scarsini, M. (2001). Stochastic comparisons
of random vectors with a common copula. Math Oper
Res, 26, 723-740.
Muller, A., and Stoyan, D. (2002). Comparison Methods for
Stochastic Models and Risks, John Wiley and Sons,
Ltd., Chichester.
Ortega, E. M. (2010). Mixture modeling and convex order-
ing for bio-inspired communication, rooted network
and maintenance. Communication, Abstracts’ Book
5th International Workshop on Applied Probability.
Madrid, Spain
Ortega, E. M. (2011). Stochastic comparisons for rooted
butterfly networks and tree networks, with random en-
vironments. Inf Sciences, 181, 2247-2259 .
Ortega, E. M., and Alonso, J. (2011). The effect of vari-
ations and correlations of some parameters on per-
formance of ATO systems with random stock levels,
with applicationspp. Proceedings ASMDA 2011. 14th
Applied Stochastic Models and Data Analysis Confer-
ence, Rome, Italy, ISBN: 97888467-3045-9, pp. 1063-
1072.
Ortega, E. M. and Escudero, L. (2010). Variability for
carrier-borne epidemics and Reed-Frost models incor-
porating uncertainties and dependencies from suscep-
tibles and infectives. Probab Eng Inform Sci, 24, 303-
328.
Ott. T. J., and Shanthikumar, J. G. (2006). Structural prop-
erties and stochastic bounds for a buffer problem in
ECTA 2011 - International Conference on Evolutionary Computation Theory and Applications
250