INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM
Ahmad Al Hanbali, Mattieu van der Heijden
2012
Abstract
In this paper we analyze the interval availability of a two-echelon, multi-item system. Modeling the system as a Markov chain we analyze the interval availability of the system. We compute in closed and exact form the expectation and, the variance of the availability during a finite time interval [0,T]. We use these characteristics together with the probability that interval availability is equal to one to approximate the survival function using a Beta distribution. Comparison of our approximation with simulation shows excellent accuracy, especially for points that are practically most relevant.
References
- AberdeenGroup, Ed. (2005). The Service Parts Management Solution Selection Report. SPM Strategy and Technology Selection Handbook, Service Chain Management.
- Alfredsson, P. and J. Verrijdt (1999). "Modeling emergency supply flexibility in a two-echelon inventory system." Management Science 45(10): 1416-1431.
- Al Hanbali, A. and M. van der Heijden (2011). Interval availability analysis of a two-echelon, multi-item system. Beta working paper 359.
- Carrasco, J. (2004). "Solving large interval availability models using a model transformation approach." Computers & OR 31(6): 807-861.
- Deloitte (2006). "The service revolution in global manufacturing industries."
- De Souza e Silva, E. and H. Gail (1986). "Calculating Cumulative Operational Time Distributions of Repairable Computer-Systems." IEEE Trans. on Computers 35(4): 322-332.
- Graves, S. C. (1985). "A multi-echelon inventory model for a repairable item with one-for-one replenishment." Management Science 31(10): 1247-1256.
- Kirmani, E. and C. Hood (2008). A New Approach to Analysis of Interval Availability. In Proc. of IEEE ARES, Spain.
- Nakagawa, T. and A. L. Goel (1973). "A note on availability for a finite interval." IEEE Trans. on Reliability 22:271-272.
- Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach, Dover Pubns.
- Rausand, M. and A. Høyland (2004). System reliability theory : models, statistical methods, and applications. Hoboken, NJ, Wiley-Interscience.
- Sherbrooke, C. (1968). "METRIC: A multi-echelon technique for recoverable item control." Operations Research 16(1): 122-141.
- Smith, M. (1997). "An approximation of the interval availability distribution." Probability in the Engineering and Informational Sciences 11(4): 451- 467.
- Takács, L. (1957). "On certain sojourn time problems in the theory of stochastic processes." Acta Mathematica Hungarica 8(1): 169-191.
- Tijms, H. (2003). A first course in stochastic models. New York, Wiley.
- van der Heijden, M. (1988). "Interval uneffectiveness distribution for a k-out-of-n multistate reliability system with repair." European journal of operational research 36(1): 66-77.
Paper Citation
in Harvard Style
Al Hanbali A. and van der Heijden M. (2012). INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM . In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8425-97-3, pages 342-348. DOI: 10.5220/0003701703420348
in Bibtex Style
@conference{icores12,
author={Ahmad Al Hanbali and Mattieu van der Heijden},
title={INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM},
booktitle={Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2012},
pages={342-348},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003701703420348},
isbn={978-989-8425-97-3},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM
SN - 978-989-8425-97-3
AU - Al Hanbali A.
AU - van der Heijden M.
PY - 2012
SP - 342
EP - 348
DO - 10.5220/0003701703420348