INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM

Ahmad Al Hanbali, Mattieu van der Heijden

2012

Abstract

In this paper we analyze the interval availability of a two-echelon, multi-item system. Modeling the system as a Markov chain we analyze the interval availability of the system. We compute in closed and exact form the expectation and, the variance of the availability during a finite time interval [0,T]. We use these characteristics together with the probability that interval availability is equal to one to approximate the survival function using a Beta distribution. Comparison of our approximation with simulation shows excellent accuracy, especially for points that are practically most relevant.

References

  1. AberdeenGroup, Ed. (2005). The Service Parts Management Solution Selection Report. SPM Strategy and Technology Selection Handbook, Service Chain Management.
  2. Alfredsson, P. and J. Verrijdt (1999). "Modeling emergency supply flexibility in a two-echelon inventory system." Management Science 45(10): 1416-1431.
  3. Al Hanbali, A. and M. van der Heijden (2011). Interval availability analysis of a two-echelon, multi-item system. Beta working paper 359.
  4. Carrasco, J. (2004). "Solving large interval availability models using a model transformation approach." Computers & OR 31(6): 807-861.
  5. Deloitte (2006). "The service revolution in global manufacturing industries."
  6. De Souza e Silva, E. and H. Gail (1986). "Calculating Cumulative Operational Time Distributions of Repairable Computer-Systems." IEEE Trans. on Computers 35(4): 322-332.
  7. Graves, S. C. (1985). "A multi-echelon inventory model for a repairable item with one-for-one replenishment." Management Science 31(10): 1247-1256.
  8. Kirmani, E. and C. Hood (2008). A New Approach to Analysis of Interval Availability. In Proc. of IEEE ARES, Spain.
  9. Nakagawa, T. and A. L. Goel (1973). "A note on availability for a finite interval." IEEE Trans. on Reliability 22:271-272.
  10. Neuts, M. (1981). Matrix-geometric solutions in stochastic models: an algorithmic approach, Dover Pubns.
  11. Rausand, M. and A. Høyland (2004). System reliability theory : models, statistical methods, and applications. Hoboken, NJ, Wiley-Interscience.
  12. Sherbrooke, C. (1968). "METRIC: A multi-echelon technique for recoverable item control." Operations Research 16(1): 122-141.
  13. Smith, M. (1997). "An approximation of the interval availability distribution." Probability in the Engineering and Informational Sciences 11(4): 451- 467.
  14. Takács, L. (1957). "On certain sojourn time problems in the theory of stochastic processes." Acta Mathematica Hungarica 8(1): 169-191.
  15. Tijms, H. (2003). A first course in stochastic models. New York, Wiley.
  16. van der Heijden, M. (1988). "Interval uneffectiveness distribution for a k-out-of-n multistate reliability system with repair." European journal of operational research 36(1): 66-77.
Download


Paper Citation


in Harvard Style

Al Hanbali A. and van der Heijden M. (2012). INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM . In Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES, ISBN 978-989-8425-97-3, pages 342-348. DOI: 10.5220/0003701703420348


in Bibtex Style

@conference{icores12,
author={Ahmad Al Hanbali and Mattieu van der Heijden},
title={INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM},
booktitle={Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,},
year={2012},
pages={342-348},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003701703420348},
isbn={978-989-8425-97-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Operations Research and Enterprise Systems - Volume 1: ICORES,
TI - INTERVAL AVAILABILITY ANALYSIS OF A TWO-ECHELON, MULTI-ITEM SYSTEM
SN - 978-989-8425-97-3
AU - Al Hanbali A.
AU - van der Heijden M.
PY - 2012
SP - 342
EP - 348
DO - 10.5220/0003701703420348