CIKM ’10, pages 869–878, New York, NY, USA.
ACM.
Bunescu, R. and Mooney, R. J. (2004). Collective Informa-
tion Extraction with Relational Markov Networks. In
Proceedings of the 42nd Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’04, Strouds-
burg, PA, USA. Association for Computational Lin-
guistics.
Cohen, W. W. (1995). Fast Effective Rule Induction. In Pro-
ceedings of the Twelfth Int. Conference on Machine
Learning, pages 115–123. Morgan Kaufmann.
Cortes, C. and Vapnik, V. (1995). Support-vector networks.
Machine Learning, 20(3):273–297.
Councill, I., Giles, C. L., and Kan, M.-Y. (2008). ParsCit:
an Open-source CRF Reference String Parsing Pack-
age. In Proceedings of the Sixth International Lan-
guage Resources and Evaluation (LREC’08), Mar-
rakech, Morocco. ELRA.
Finkel, J. R., Grenager, T., and Manning, C. (2005). In-
corporating non-local Information into Information
Extraction Systems by Gibbs Sampling. In Pro-
ceedings of the 43rd Annual Meeting on Association
for Computational Linguistics, ACL ’05, pages 363–
370, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Gulhane, P., Rastogi, R., Sengamedu, S. H., and Tengli,
A. (2010). Exploiting Content Redundancy for Web
Information Extraction. Proc. VLDB Endow., 3:578–
587.
Kl¨osgen, W. (1996). Explora: A Multipattern and
Multistrategy Discovery Assistant. In Fayyad, U.,
Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R.,
editors, Advances in Knowledge Discovery and Data
Mining, pages 249–271. AAAI Press.
Kou, Z. and Cohen, W. W. (2007). Stacked Graphical Mod-
els for Efficient Inference in Markov Random Fields.
In Proceedings of the 2007 SIAM Int. Conf. on Data
Mining.
Krishnan, V. and Manning, C. D. (2006). An Effective two-
stage Model for Exploiting non-local Dependencies in
Named Entity Recognition. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association
for Computational Linguistics, ACL-44, pages 1121–
1128, Stroudsburg, PA, USA. Association for Compu-
tational Linguistics.
Lafferty, J., McCallum, A., and Pereira, F. (2001). Condi-
tional Random Fields: Probabilistic Models for Seg-
menting and Labeling Sequence Data. Proc. 18th In-
ternational Conf. on Machine Learning, pages 282–
289.
Mann, G. S. and McCallum, A. (2010). Generalized Ex-
pectation Criteria for Semi-Supervised Learning with
Weakly Labeled Data. J. Mach. Learn. Res., 11:955–
984.
McCallum, A. (2003). Efficiently Inducing Features of
Conditional Random Fields. In Nineteenth Confer-
ence on Uncertainty in Artificial Intelligence (UAI03).
Peng, F. and McCallum, A. (2004). Accurate Information
Extraction from Research Papers using Conditional
Random Fields. In HLT-NAACL, pages 329–336.
Poon, H. and Domingos, P. (2007). Joint Inference in In-
formation Extraction. In AAAI’07: Proceedings of the
22nd National Conference on Artificial intelligence,
pages 913–918. AAAI Press.
Richardson, M. and Domingos, P. (2006). Markov Logic
Networks. Machine Learning, 62(1-2):107–136.
Singh, S., Schultz, K., and McCallum, A. (2009). Bi-
directional Joint Inference for Entity Resolution
and Segmentation Using Imperatively-Defined Factor
Graphs. In Proceedings of the European Conference
on Machine Learning and Knowledge Discovery in
Databases: Part II, ECML PKDD ’09, pages 414–
429. Springer-Verlag.
Stewart, L., He, X., and Zemel, R. S. (2008). Learning Flex-
ible Features for Conditional Random Fields. IEEE
Trans. Pattern Anal. Mach. Intell., 30(8):1415–1426.
Sutton, C. and McCallum, A. (2004). Collective Segmen-
tation and Labeling of Distant Entities in Information
Extraction. In ICML Workshop on Statistical Rela-
tional Learning and Its Connections to Other Fields.
Wolpert, D. H. (1992). Stacked Generalization. Neural Net-
works, 5:241–259.
Yang, J.-M., Cai, R., Wang, Y., Zhu, J., Zhang, L., and
Ma, W.-Y. (2009). Incorporating Site-level Knowl-
edge to Extract Structured Data from Web Forums. In
Proceedings of the 18th international conference on
World wide web, pages 181–190. ACM.
STACKED CONDITIONAL RANDOM FIELDS EXPLOITING STRUCTURAL CONSISTENCIES
249