Transactions on Pattern Analysis and Machine Intel-
ligence (PAMI), 23(11):1222–1239.
Bruhn, A. (2006). Variational optic flow computation: Ac-
curate modelling and efficient numerics. PhD thesis,
Universit
¨
at des Saarlandes, Saarbr
¨
ucken, Germany.
Dantzig, G. and Thapa, M. (1997). Linear Programming 1:
Introduction. Springer Series in Operations Research.
Springer.
Desmet, J., Maeyer, M. D., Hazes, B., and Lasters, I.
(1992). The dead-end elimination theorem and its use
in protein side-chain positioning. Nature, 356:539–
542.
Felzenszwalb, P. and Huttenlocher, D. (2006). Efficient be-
lief propagation for early vision. International Jour-
nal on Computer Vision (IJCV), 70(1).
Globerson, A. and Jaakkola, T. (2007). Fixing max-product:
Convergent message passing algorithms for MAP re-
laxations. In Conference on Neural Information Pro-
cessing Systems (NIPS), Vancouver, Canada.
Glocker, B., Komodakis, N., Tziritas, G., Navab, N., and
Paragios, N. (2008). Dense image registration through
MRFs and efficient linear programming. Medical Im-
age Analysis, 12:731–741.
Goldl
¨
ucke, B. and Cremers, D. (2010). Convex relaxation
for multilabel problems with product label spaces. In
European Conference on Computer Vision (ECCV),
Iraklion, Greece.
Goldstein, T., Bresson, X., and Osher, S. (2009). Global
minimization of Markov random fields with applica-
tions to optical flow. Technical Report 09-77, UCLA
CAM report.
Horn, B. and Schunck, B. (1981). Determining optical flow.
Artificial Intelligence, 17:185–203.
Ishikawa, H. (2003). Exact optimization for Markov Ran-
dom Fields with convex priors. IEEE Transactions
on Pattern Analysis and Machine Intelligence (PAMI),
25(10):1333–1336.
Klaus, A., Sormann, M., and Karner, K. (2006). Segment-
based stereo matching using adaptive cost aggregation
and dynamic programming. In International Con-
ference on Pattern Recognition (ICPR), Hong Kong,
China.
Kleinberg, J. and Tardos, E. (1999). Approximation al-
gorithms for classification problems with pairwise
relationships: metric labeling and Markov Random
Fields. In Symposium on Foundations of Computer
Science.
Kolmogorov, V. (2006). Convergent tree-reweighted mes-
sage passing for energy minimization. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence
(PAMI), 28(10):1568–1583.
Lellmann, J., Becker, F., and Schn
¨
orr, C. (2009). Con-
vex optimization for multi-class image labeling by
simplex-constrained total variation. In IEEE Interna-
tional Conference on Computer Vision (ICCV), Kyoto,
Japan.
Meltzer, T., Yanover, C., and Weiss, Y. (2005). Globally
optimal solutions for energy minimization in stereo
vision using reweighted belief propagation. In IEEE
International Conference on Computer Vision (ICCV),
Beijing, China.
Memin, E. and Perez, P. (1998). Dense estimation and
object-based segmentation of the optical flow with ro-
bust techniques. IEEE Transactions on Image Pro-
cessing (TIP), 7(5):703–719.
Michelot, C. (1986). A finite algorithm for finding the
projection of a point onto the canonical simplex of
n
. Journal on Optimization Theory and Applica-
tions, 50(1).
Nesterov, Y. (2004). Introductory lectures on convex op-
timization. Applied Optimization. Kluwer Academic
Publishers.
Nesterov, Y. (2005). Smooth minimization of non-smooth
functions. Mathematical Programming, 103(1):127–
152.
Papenberg, N., Bruhn, A., Brox, T., Didas, S., and Weick-
ert, J. (2006). Highly accurate optic flow computa-
tion with theoretically justified warping. International
Journal on Computer Vision (IJCV), 67(2):141–158.
Pock, T., Schoenemann, T., Cremers, D., and Bischof, H.
(2008). A convex formulation for continuous multi-
label problems. In European Conference on Computer
Vision (ECCV), Marseille, France.
Scharstein, D. and Szeliski, R. (2002). A taxonomy and
evaluation of dense two-frame stereo correspondence
algorithms. International Journal on Computer Vision
(IJCV), 47(1–3):7–42.
Shekhovtsov, A., Kovtun, I., and Hlav
´
a
˘
c, V. (2008). Ef-
ficient MRF deformation model for non-rigid image
matching. Computer Vision and Image Understand-
ing, 112(1):91–99.
Sontag, D., Globerson, A., and Jaakkola, T. (2010). Intro-
duction to dual decomposition for inference. In Opti-
mization for Machine Learning. MIT Press.
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-
mogorov, V., Agarwala, A., Tappen, M., and Rother,
C. (2008). A comparative study of energy min-
imization methods for Markov random fields with
smoothness-based priors. IEEE Transactions on
Pattern Analysis and Machine Intelligence (PAMI),
30(6):1068–1080.
Trobin, W., Pock, T., Cremers, D., and Bischof, H. (2008).
An unbiased second-order prior for high-accuracy
motion estimation. In Pattern Recognition (Proc.
DAGM), Munich, Germany.
Wainwright, M., Jaakkola, T., and Willsky, A. (2005). MAP
estimation via agreement on (hyper-)trees: Message-
passing and linear programming approaches. IEEE
Tansactions on Information Theory, 51(11):3697–
3717.
Woodford, O., Torr, P., Reid, I., and Fitzgibbon, A.
(2008). Global stereo reconstruction under second
order smoothness priors. In IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Anchorage, Alaska.
Yang, Q., Wang, L., Yang, R., Stew
´
enius, H., and Nist
´
er,
D. (2009). Stereo matching with color-weighted cor-
relation, hierarchical belief propagation and occlusion
handling. IEEE Transactions on Pattern Analysis and
Machine Intelligence (PAMI), 31(3):492–504.
Zach, C., Gallup, D., Frahm, J.-M., and Niethammer, M.
(2008). Fast global labeling for real-time stereo us-
ing multiple plane sweeps. In Vision, Modeling and
Visualization Workshop (VMV), Konstanz, Germany.
Zach, C., Pock, T., and Bischof, H. (2007). A duality based
approach for realtime TV-L1 optical flow. In Pattern
Recognition (Proc. DAGM), Heidelberg, Germany.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
14