ACKNOWLEDGEMENTS
Gauthier Doquire is funded by a Belgian F.R.I.A.
grant.
REFERENCES
Asuncion, A. and Newman, D. (2007). UCI machine learn-
ing repository. University of California, Irvine, School
of Information and Computer Sciences, available at
http://www.ics.uci.edu/∼mlearn/MLRepository.html.
Bezdez, J. C. and Pal, S. K. (1992). Fuzzy models for pat-
tern recognition. IEEE Press, Piscataway, NJ.
Chapelle, O., Sch
¨
olkopf, B., and Zien, A., editors (2006).
Semi-Supervised Learning. MIT Press, Cambridge,
MA.
Chung, F. R. K. (1997). Spectral Graph Theory (CBMS
Regional Conference Series in Mathematics, No. 92).
American Mathematical Society.
C
ˆ
ome, E., Oukhellou, L., Denoeux, T., and Aknin, P.
(2009). Learning from partially supervised data using
mixture models and belief functions. Pattern Recogn.,
42:334–348.
Dash, M. and Liu, H. (1997). Feature selection for classifi-
cation. Intelligent Data Analysis, 1:131–156.
Denoeux, T. and Zouhal, L. M. (2001). Handling possi-
bilistic labels in pattern classification using evidential
reasoning. Fuzzy Sets and Systems, 122(3):47–62.
Ding, C. and Peng, H. (2003). Minimum redundancy fea-
ture selection from microarray gene expression data.
In Proceedings of the IEEE Computer Society Con-
ference on Bioinformatics, CSB ’03, pages 523–528,
Washington, DC, USA. IEEE Computer Society.
Friedman, J. H. (1991). Multivariate adaptive regression
splines. The Annals of Statistics, 19(1):1–67.
Guyon, I. and Elisseeff, A. (2003). An introduction to
variable and feature selection. J. Mach. Learn. Res.,
3:1157–1182.
Hall, M. (1999). Correlation-based Feature Selection for
Machine Learning. PhD thesis, University of Waikato.
He, X., Cai, D., and Niyogi, P. (2006). Laplacian Score
for Feature Selection. In Advances in Neural Infor-
mation Processing Systems 18, pages 507–514. MIT
Press, Cambridge, MA.
Jenhani, I., Amor, N. B., and Elouedi, Z. (2008). Decision
trees as possibilistic classifiers. Int. J. Approx. Rea-
soning, 48:784–807.
Kohavi, R. and John, G. H. (1997). Wrappers for Feature
Subset Selection. Artificial Intelligence, 97:273–324.
Kwak, N. and Choi, C.-H. (2002). Input feature selec-
tion for classification problems. IEEE Transactions
on Neural Networks, 13:143–159.
Meyer, P. E., Schretter, C., and Bontempi, G. (2008).
Information-Theoretic Feature Selection in Microar-
ray Data Using Variable Complementarity. Se-
lected Topics in Signal Processing, IEEE Journal of,
2(3):261–274.
Peng, H., Long, F., and Ding, C. (2005). Feature se-
lection based on mutual information criteria of max-
dependency, max-relevance, and min-redundancy.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 27(8):1226–1238.
Semani, D., Fr
´
elicot, C., and Courtellemont, P. (2004).
Combinaison d’
´
etiquettes floues/possibilistes pour la
s
´
election de variables. In 14ieme Congr
`
es Franco-
phone AFRIF-AFIA de Reconnaissance des Formes et
Intelligence Artificielle, RFIA’04, pages 479–488.
Smets, P., Hsia, Y., Saffiotti, A., Kennes, R., Xu, H.,
and Umkehren, E. (1991). The transferable belief
model. Symbolic and Quantitative Approaches to Un-
certainty, pages 91–96.
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society
B, 58:267–288.
Wang, B., Jia, Y., Han, Y., and Han, W. (2009). Effective
feature selection on data with uncertain labels. In Pro-
ceedings of the 2009 IEEE International Conference
on Data Engineering, pages 1657–1662, Washington,
DC, USA.
Yang, Y. and Pedersen, J. O. (1997). A comparative study
on feature selection in text categorization. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, ICML ’97, pages 412–420, San
Francisco, CA, USA. Morgan Kaufmann Publishers
Inc.
Yuan, M. and Lin, Y. (2006). Model selection and estima-
tion in regression with grouped variables. Journal of
the Royal Statistical Society, Series B, 68:49–67.
Zhang, D., Chen, S., and Zhou, Z.-H. (2008). Constraint
score: A new filter method for feature selection with
pairwise constraints. Pattern Recogn., 41:1440–1451.
Zhao, J., Lu, K., and He, X. (2008). Locality sensitive
semi-supervised feature selection. Neurocomputing,
71:1842–1849.
Zhao, Z. and Liu, H. (2007). Semi-supervised Feature Se-
lection via Spectral Analysis. In Proceedings of the
7th SIAM International Conference on Data Mining.
HANDLING IMPRECISE LABELS IN FEATURE SELECTION WITH GRAPH LAPLACIAN
169