for non-convex MINLP. Optimization Methods and
Software, 24(4):597–634.
Boll, D. W., Donovan, J., Graham, R. L., and Lubachevsky,
B. D. (2000). Improving dense packings of equal disks
in a square. The Electronic Journal of Combinatorics,
7.
Casado, L. G., Garcia, I., Szab
´
o, P. G., and Csendes, T.
(2001). Packing equal circles in a square ii. - new re-
sults for up to 100 circles using the tamsass-pecs algo-
rithm. In Optimization Theory: Recent Developments
from M
´
atrah
´
aza, pages 207–224.
Costa, A., Hansen, P., and Liberti, L. (2010a). Formula-
tion symmetries in circle packing. In Mahjoub, R.,
editor, Proceedings of the International Symposium
on Combinatorial Optimization, volume 36 of Elec-
tronic Notes in Discrete Mathematics, pages 1303–
1310, Amsterdam. Elsevier.
Costa, A., Hansen, P., and Liberti, L. (2010b). Static sym-
metry breaking in circle packing. In Faigle, U., editor,
Proceedings of the 9
th
Cologne-Twente Workshop on
Graphs and Combinatorial Optimization, pages 47–
50. University of K
¨
oln.
Graham, R. L. and Lubachevsky, B. D. (1996). Repeated
patterns of dense packings of equal disks in a square.
The Electronic Journal of Combinatorics, 3(1).
ILOG (2009). ILOG CPLEX 12.1 User’s Manual. ILOG
S.A., Gentilly, France.
Liberti, L. (2006). Writing global optimization software. In
Liberti, L. and Maculan, N., editors, Global Optimiza-
tion: from Theory to Implementation, pages 211–262.
Springer, Berlin.
Liberti, L. (2008). Automatic generation of symmetry-
breaking constraints. In Yang, B., Du, D.-Z., and
Wang, C., editors, COCOA Proceedings, volume 5165
of LNCS, pages 328–338, Berlin. Springer.
Liberti, L. (2009). Reformulations in mathematical pro-
gramming: Definitions and systematics. RAIRO-RO,
43(1):55–86.
Liberti, L. (2010). Reformulations in mathematical pro-
gramming: automatic symmetry detection and ex-
ploitation. Mathematical Programming, pages 1–32.
Locatelli, M. and Raber, U. (1999). Packing equal circles
in a square: I. theoretical results. Technical Report
08-99, Dip. Sistemi e Informatica, Univ. di Firenze.
Locatelli, M. and Raber, U. (2002). Packing equal circles
in a square: a deterministic global optimization ap-
proach. Discrete Applied Mathematics, 122(1-3):139–
166.
Nurmela, K. J. and
¨
Osterg
˚
ard, P. R. J. (1997). Packing up
to 50 equal circles in a square. Discrete & Computa-
tional Geometry, 18(1):111–120.
Raber, U. (1999). Nonconvex all-quadratic global optimiza-
tion problems: solution methods, application and re-
lated topics. PhD thesis, University of Trier, Germany.
Sahinidis, N. and Tawarmalani, M. (2005). BARON 7.2.5:
Global Optimization of Mixed-Integer Nonlinear Pro-
grams, User’s Manual.
Smith, E. and Pantelides, C. (1999). A symbolic refor-
mulation/spatial branch-and-bound algorithm for the
global optimization of nonconvex MINLPs. Comput-
ers & Chemical Engineering, 23:457–478.
Szab
´
o, P. G. (2005). Optimal substructures in optimal and
approximate circle packings. Beitrage zur Algebra
und Geometrie (Contributions to Algebra and Geom-
etry), 46:103–118.
Szab
´
o, P. G., Mark
´
ot, M. C., Csendes, T., Specht, E.,
Casado, L. G., and Garca, I. (2007). New Ap-
proaches to Circle Packing in a Square: With Program
Codes (Springer Optimization and Its Applications).
Springer-Verlag New York, Inc., Secaucus, NJ, USA.
ICORES 2012 - 1st International Conference on Operations Research and Enterprise Systems
10