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Abstract: We propose and evaluate a new method for automatic identification of suspicious behavior in video surveil-
lance data. It partitions the bootstrap set into clusters then assigns new observation sequences to clusters based
on statistical tests of HMM log likelihood scores. In an evaluation on a real-world testbed video surveillance
data set, the method achieves a false alarm rate of 7.4% at a 100% hit rate. It is thus a practical and effective
solution to the problem of inducing scene-specific statistical models useful for bringing suspicious behavior
to the attention of human security personnel.

1 INTRODUCTION

We focus on enhancing security by performing in-
telligent filtering of typical events and automatically
bringing suspicious events to the attention of human
security personnel.

Pre-trained hidden Markov model (HMMs) and
other dynamic Bayesian networks such as conditional
random fields (CRFs) have been widely used in this
area (Gao et al., 2004; Sminchisescu et al., 2005).
Some of the existing work relies on having a priori
known behavior classes (Nair and Clark, 2002; Wu
et al., 2005).

More recent work uses unsupervised analysis and
clustering of behaviors (Li et al., 2006; Swears et al.,
2008). Xiang and Gong (2005) model the distribution
of activity data in a scene using a Gaussian mixture
model (GMM) and employ the Bayesian information
criterion (BIC) to select the optimal number of behav-
ior classes prior to HMM training.

We propose to use HMM-based clustering on a
small bootstrap set of sequences labeled as normal or
suspicious. After bootstrapping is complete, we as-
sign new observation sequences to behavior clusters
using statistical tests on the log likelihood of the se-
quence according to the corresponding HMMs. The
cluster-specific likelihood threshold is learned rather
than set arbitrarily.

In this paper, we briefly describe our method. For
more details, see the full version of this paper.1

1http://www.cs.ait.ac.th/techreports/AIT-CSIM-TR-
2012-1.pdf.
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Figure 1: Sample foreground extraction and shadow re-
moval results. (a) Original image. (b) Foreground pixels
according to background model. (c) Foreground pixels af-
ter shadow removal.

2 BEHAVIOR MODEL
BOOTSTRAPPING

To build the bootstrap set, over a short period such as
one week, we first discard no-motion frames. We then
use the background modeling technique proposed by
Poppe et al. (2007). We use normalized cross cor-
relation (NCC) to eliminate shadows cast by mov-
ing objects. Sample results from the foreground ex-
traction and shadow removal procedures are shown in
Figure 1. We apply morphological opening then clos-
ing operations to obtain the connected components,
then we filter out any components whose size is below
threshold. We finally represent each blob (connected
foreground component) i at time t by a feature vec-
tor ~f t

i containing the blob’s centroid, size, and aspect
ratio, a unit-normalized motion vector for the blob
compared to the previous frame, and the blob’s speed.
Next we map each feature vector ~f t

i to a discrete cate-
gory (cluster ID) in the set V = fv1;v2; : : : ;vUg, where

655Ouivirach K., Gharti S. and N. Dailey M..
AUTOMATIC SUSPICIOUS BEHAVIOR DETECTION FROM A SMALL BOOTSTRAP SET.
DOI: 10.5220/0003727206550658
In Proceedings of the International Conference on Computer Vision Theory and Applications (VISAPP-2012), pages 655-658
ISBN: 978-989-8565-03-7
Copyright c 2012 SCITEPRESS (Science and Technology Publications, Lda.)



U is the number of categories, using k-means cluster-
ing. A behavior sequence is finally represented as a
sequence of cluster IDs.

In blob tracking, we associate blobs in the current
frame with the tracks from the previous frame using
bounding box overlap rule. Blobs corresponding to
isolated moving objects are associated with unique
tracks. When no merge or split occurs, each blob
either matches one of the existing tracks or is clas-
sified as new, in which case a new track is created.
We destroy tracks that are inactive for some num-
ber of frames. We use the color coherence vector
(CCV) (Pass et al., 1996) as an appearance model to
handle cases of blob merges and splits When tracks
merge, we group them, but keep their identities sepa-
rate, and when tracks split, we attempt to associate the
new blobs with the correct tracks or groups of tracks
by comparing their CCVs. This works well on typical
simple cases such as those as shown in Figure 2, but
it can make mistakes with more complex cases.

Frame 72 Frame 90 Frame 94

Frame 103 Frame 110 Frame 116

Figure 2: Sample blob tracking results for typical simple
case.

After blob tracking, we obtain, from a given video,
a set of observation sequences describing the mo-
tion and appearance of every distinguishable moving
object in the scene. We next partition the observa-
tion sequences into clusters of similar behaviors then
model the sequences within each cluster using a sim-
ple linear HMM. We use the method from our pre-
vious work (Ouivirach and Dailey, 2010), which first
uses dynamic time warping (DTW) to obtain a dis-
tance matrix for the set of observation sequences then
performs agglomerative hierarchical clustering on the
distance matrix to obtain a dendogram.

To determine where to cut off the dendogram,
we traverse the DTW dendogram in depth-first order
from the root and attempt to model the observation
sequences within the corresponding subtree using a
single linear HMM. If, after training, the HMM is un-
able to “explain” (in the sense described below) the
sequences associated with the current subtree, we dis-
card the HMM then recursively attempt to model each

of the current node’s children. Whenever the HMM is
able to explain the observation sequences associated
with the current node’s subtree, we retain the HMM
and prune the tree.

A HMM is said to explain a cluster c if there are
no more than Nc sequences in cluster c whose per-
observation log-likelihood is less than a threshold pc.
To determine the optimal rejection threshold pc for
cluster c, we use an approach similar to that of Oates
et al. (2001). We generate random sequences from the
HMM and then calculate the mean µc and standard de-
viation sc of the per-observation log likelihood over
the set of generated sequences. After obtaining the
statistics of the per-observation log likelihood, we let
pc be µc � zsc, where z is an experimentally tuned
parameter.

3 ANOMALY DETECTION

For anomaly detection, we propose a semi-supervised
method that self-calibrates itself from the bootstrap
set. We apply the algorithm of Section 2 to both the
positive and negative sequences in the bootstrap set.
We identify each cluster as a “normal” cluster if all
of the sequences falling into it are labeled as nor-
mal, or identify it as an “abnormal” cluster if any of
the sequences falling into it are labeled as abnormal.
New sequences are classified as normal if the most
likely HMM for the input sequence is associated with
a cluster of normal sequences and the z-scaled per-
observation log likelihood of the sequence under that
most likely model is greater than a global empirically
determined threshold z.

4 EXPERIMENTAL RESULTS

We recorded video from the scene in front of a build-
ing for one week. We labeled 625 occurrences of
walking into the building, walking out, riding bicy-
cles in, and riding bicycles out as normal and the re-
maining 35 occurrences as suspicious or abnormal.

4.1 Model Configuration Selection

Towards model identification, we performed a series
of experiments with different bootstrap parameter set-
tings and selected the configuration with the highest
accuracy in separating the normal sequences from the
abnormal sequences on the bootstrap sequence set, as
measured by the false positive rate for abnormal se-
quences. Every bootstrap cluster containing an ab-
normal sequence is considered abnormal, so we al-
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Table 1: Anomaly detection results for the proposed
method, k-NN, PCA, and SVM in Experiment I, II, III,
and IV, respectively. For PCA, we include 11 abnormal se-
quences from the bootstrap set in the test set, so the total
number of positives is 35.

Method TP FP TN FN TPR FPR
Ours 24 36 450 0 1 0.074
1-NN 19 1 485 5 0.792 0.002
PCA 35 421 65 0 1 0.87
SVM 24 228 258 0 1 0.469

ways obtain 100% detection on the bootstrap set; the
only discriminating factor is the false positive rate. To
find the distribution (parameters µc and sc) of the per-
observation log likelihood for a particular HMM, we
always generated 1000 sequences of 150 observations
then used a z-threshold of 2.0. We fixed the parame-
ter Nc (the number of deviant patterns allowed in a
cluster) to 10.

Based on the false positive rate criterion described
above, we selected the model configuration consisting
of HMMs with five states and seven tokens trained on
150 bootstrap sequences.

4.2 Anomaly Detection

Here we describe four experiments to evaluate our
anomaly detection method. For each method, we use
the 150-sequence bootstrap sequence set from Sec-
tion 4.1 as training data and test on the remaining 510
sequences. In every experiment, we calculate an ROC
curve and select the detection threshold yielding the
best false positive rate at a 100% hit rate. Our ex-
perimental hypothesis was that the proposed method
for modeling scene-specific behavior patterns should
obtain better false positive rates than the traditional
methods.

In Experiment I, the red line in Figure 3 repre-
sents the ROC curve for our method as we vary the
likelihood threshold at which a sequence is consid-
ered anomalous. Note that the ROC does not inter-
sect the point (0;0) because any sequence that is most
likely under one of the HMMs modeling anomalous
sequences in the bootstrap set is automatically clas-
sified as anomalous regardless of the threshold. Ta-
ble 1 shows the detailed performance of this model,
and Figure 4 shows an example of a sequence classi-
fied as abnormal.

In Experiment II, we applied k-nearest neighbors
(k-NN) using the same division of sequences into
training and testing as in Experiment I. As the dis-
tance measure, we used the same DTW measure we
used for hierarchical clustering of the bootstrap pat-
terns in our method. We varied k from 1 to 5. The best
result for k-NN is shown in Table 1. While the false

Figure 3: Anomaly detection ROC curves. Red, green and
blue lines represent ROCs for the proposed method in Ex-
periment I, PCA-based anomaly detection in Experiment
III, and SVM-based anomaly detection in Experiment IV,
respectively.

positive rates are much lower than those obtained in
our method, the hit rates are unacceptable.

In Experiment III, we classified sequences as nor-
mal or anomalous using a Gaussian density estimator
derived from principal components analysis (PCA).
We calculated, for each sequence in the testbed data
set, a summary vector consisting of the means and
standard deviations of each observation vector ele-
ment over the entire sequence. With seven features
in the observation vector, we obtained a 14-element
vector summarizing each the sequence. After fea-
ture summarization, we normalized each component
of the summary vector by z-scaling. Then, since we
are performing probability density estimation for the
normal patterns, we applied PCA to the 139 normal
sequences in the bootstrap set. We chose the num-
ber of principal components accounting for 80% of
the variance in the bootstrap data. Finally, we classi-
fied the remaining 521 test sequences using the PCA
model to calculate the Mahalanobis distance of each
sequence’s summary vector to the mean of the normal
bootstrap patterns’ summary vectors. The green line
in Figure 3 is the ROC curve obtained by varying the
Mahalanobis distance threshold, and Table 1 shows
detailed results for anomaly detection at a 100% hit
rate. The high false positive rate at this threshold
and the overall poor performance in the ROC anal-
ysis show that PCA is clearly inferior to our proposed
method.

In Experiment IV, here we used the same sum-
mary vector technique used in Experiment III but per-
formed supervised classification using support vector
machines. We used the radial basis function kernel
implementation in LIBSVM (Chang and Lin, 2001)
with grid search for the optimal hyperparameters us-
ing five-fold cross validation on the training set (150
sequences). The blue line in Figure 3 is the ROC
curve obtained by varying the threshold on the signed
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Frame 187 Frame 208 Frame 225 Frame 249 Frame 267

Figure 4: Example anomaly detected by the proposed method in Experiment I. The sequence contains a person walking
around looking for an unlocked bicycle.

distance to the separating hyperplane used for clas-
sification as normal or abnormal. Table 1 shows
the detailed anomaly detection results for SVMs at a
100% hit rate. Although the results are clearly better
than those obtained from k-NN or PCA, they are also
clearly inferior to those obtained in Experiment I.

5 DISCUSSION AND
CONCLUSIONS

We have proposed and evaluated a new method for
bootstrapping scene-specific anomalous human be-
havior detection systems. It requires minimal involve-
ment of a human operator; the only required action is
to label the patterns in a small bootstrap set as nor-
mal or anomalous. With a bootstrap set of 150 se-
quences, the method achieves a false positive rate of
merely 7.4% at a hit rate of 100%. The experiments
demonstrate that with a collection of simple HMMs,
it is possible to learn a complex set of varied behav-
iors occurring in a specific scene. Deploying our sys-
tem on a large video sensor network would potentially
lead to substantial increases in the productivity of hu-
man monitors.

The main limitation of our current method is that
the blob tracking process is not robust for complex
events involving multiple people. The method also
does not allow evolution of the learned bootstrap
model over time. In future work, we plan to address
these limitations.
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