Table 4: Cost matrix: Comparison old model with new model.
Limère et al.
(2012)
Maintenance policy Machine 1
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
Maintenance policy
Machine 2
k=1
1799,1 1691,8 1388,8 1693,6 1222,3 1415,1 1584,1 1758,2
k=2
1619,1 1519,2 1225,7 1544,3 1060,4 1285,4 1450,5 1664,0
k=3
1357,0 1258,4 1135,7 1245,8 989,7 1216,3 1286,3 1358,3
k=4
1529,1 1438,2 1135,7 1497,3 1003,7 1203,3 1437,8 1703,1
k=5
1253,0 1126,6 975,6 1163,0 956,7
1073,5 1154,5 1291,4
k=6
1312,0 1213,4 1090,7 1252,8 993,5 1255,5 1330,1 1403,4
k=7
1379,0 1272,4 1090,7 1344,9 993,5 1255,5 1506,9 1620,0
k=8
1484,1 1393,2 1090,7 1495,3 953,5 1255,5 1506,9 1820,2
Aghezzaf and
Najid (2008)
Maintenance policy Machine 1
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
Maintenance policy
Machine 2
k=1
1951,4 1857,5 1553,0 1885,9 1408,1 1607,1 1799,9 1998,1
k=2
1843,6 1749,7 1445,2 1778,0 1300,2 1499,2 1692,0 1890,3
k=3
1588,6 1493,7 1336,2 1512,0 1189,2 1397,2 1500,0 1623,3
k=4
1855,6 1764,8 1462,3 1798,1 1315,3 1519,3 1712,1 1915,4
k=5
1512,7 1417,9 1228,4 1438,2 1149,4
1281,4 1397,2 1535,5
k=6
1637,3 1542,4 1388,9 1562,7 1239,9 1472,9 1585,8 1699,0
k=7
1779,5 1688,7 1472,2 1718,0 1323,2 1556,2 1775,0 1893,3
k=8
1955,0 1864,1 1561,6 1910,4 1414,6 1645,6 1864,4 2120,7
5 CONCLUSIONS
We made a change to the model of Aghezzaf and
Najid (2008) and have shown that our model more
accurately represents the real situation. In the future,
the model can be further extended. For instance, a
production system with machines in series can be
investigated. Moreover, integration of this model at
the aggregate planning level with operational
scheduling models offers a new research direction.
REFERENCES
Aghezzaf, E. H., Jamali, M. A. and Ait-Kadi, D., 2007. An
integrated production and preventive Maintenance
planning model. Eur. J. of Oper. Res., 181, 679-685.
Aghezzaf, E. H. and Najid, M., 2008. Integrated
production planning and preventive maintenance in
deteriorating production systems. Information
Sciences, 178, 3382-3392.
Ashayeri, J., Teelen, A. and Selen, W., 1996. A production
and maintenance planning model for the process
industry. Int. J. Production Res., 34(12), 3311-3326.
Berrichi, A., Amodeo, L., Yalaoui, F., Châtelet, E. and
Mezghiche, M., 2009. Bi-objective optimization
algorithms for joint production and maintenance
scheduling: application to the parallel machine
problem. J Intell Manuf., 20, 389-400.
Berrichi, A., Yalaoui, F., Amodeo, L. and Mezghiche M.,
2010. Bi-objective ant colony optimization approach
to optimize production and maintenance scheduling.
Computers & Operations Research, 37, 1584-1596.
Cassady, C. R. and Kutanoglu, E., 2005. Integrating Pre-
ventive Maintenance Planning and Production Sche-
duling for a Single Machine. IEEE Transactions on
Reliability, 54(2), 304-309.
Graves, G. H. and Lee, C. Y., 1999. Scheduling mainte-
nance and semiresumable jobs on a single machine.
Nav. Res. Logist., 46(7), 845-863.
Lee, C. Y. and Chen, Z. L., 2000. Scheduling jobs and
maintenance activities on parallel machines. Nav. Res.
Logist., 47(2), 145-165.
Lewis, E. E., 1987. Introduction to Reliability Enginee-
ring. John Wiley and Sons, New York, USA.
Wienstein, L. and Chung, C. H., 1999. Integrating mainte-
nance and production decisions in a hierarchical pro-
duction planning environment. Computers & Opera-
tions Research, 26(10-11), 1059-1074.
INTEGRATED PRODUCTION AND MAINTENANCE PLANNING - Modeling Corrective Maintenance
207