−5
0
5
10
15
−15
−10
−5
0
−8
−6
−4
−2
0
(a)
Camera index
Error [cm]
Herz−Jesu−P8: Position error, iterative calculation
(b)
(c)
Camera index
Error [cm]
fountain−P11: Position error, iterative calculation
(d)
Figure 6: The scene reconstruction and position error of data sets Herz-Jesu-P8 (a-b) and fountain-P11 (c-d). Red cameras
show the iteratively calculated camera poses, green cameras the ground truth (might not be distinguishable from the calculated
poses in this scale). The scene reconstruction was achieved without further optimization, such as Bundle Adjustment.
Table 1: Errors for the estimated poses of 23 images taken in our smart room.
Error of mean position [cm] Error of median position [cm] mean reprojection
total x y z total x y z error [px]
mean 41,30 19,97 18,78 25,54 39,50 17,11 18,32 24,26 0,7914
median 25,24 8,27 8,65 11,29 21,63 6,64 7,77 12,11 0,6972
standard deviation 48,96 34,72 25,61 29,19 49,74 35,18 26,51 29,88 0,3897
min 8,06 0,20 0,02 0,10 5,31 0,97 0,10 0,10 0,3534
max 227,76 165,60 117,74 102,89 227,76 165,60 117,74 102,89 1,8259
ACKNOWLEDGEMENTS
This work is partly supported by the German Re-
search Foundation (DFG) within the Collaborative
Research Program SFB 588 ”Humanoide Roboter”.
The authors would like to thank Manel Martinez and
Jan Richarz for their helpful comments.
REFERENCES
Aslan, C. T., Bernardin, K., and Stiefelhagen, R. (2008).
Automatic calibration of camera networks based on
local motion features. ECCV-M2SFA2.
Br
¨
uckner, M. and Denzler, J. (2010). Active self-calibration
of multi-camera systems. Proc. DAGM.
Coleman, T. F. and Li, Y. (1996). An Interior Trust Re-
gion Approach for Nonlinear Minimization Subject to
Bounds. SIOPT, 6(2):418–445.
Frank-Bolton, P. et al. (2008). Vision-based localization for
mobile robots using a set of known views. Proc. ISVC,
pages 195–204.
Hartley, R. I. and Zisserman, A. (2004). Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, second edition.
Levenberg, K. (1944). A Method for the Solution of Certain
Problems in Least-Squares. Quart. Applied Math.,
2:164–168.
Liu, J. and Hubbold, R. (2006). Automatic camera cali-
bration and scene reconstruction with scale-invariant
features. Proc. ISVC, pages 558–568.
Lowe, D. G. (1999). Object recognition from local scale-
invariant features. Proc. IEEE ICCV, pages 1150–
1157.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. IJCV, 60(2):91–110.
Marquardt, D. W. (1963). An Algorithm for Least-
Squares Estimation of Nonlinear Parameters. SIAP,
11(2):431–441.
Nist
´
er, D. (2004). An efficient solution to the five-point
relative pose problem. TPAMI, 26:756–777.
Rodehorst, V., Heinrichs, M., and Hellwich, O. (2008).
Evaluation of relative pose estimation methods for
multi-camera setups. Proc. Congress ISPRS.
Salah, A., Morros, R., Luque, J., Segura, C., Hernando, J.,
Ambekar, O., Schouten, B., and Pauwels, E. (2008).
Multimodal identification and localization of users in
a smart environment. JMUI, 2(2):75–91.
Schauerte, B., Richarz, J., Pl
¨
otz, T., Thurau, C., and Fink,
G. A. (2009). Multi-modal and multi-camera attention
in smart environments. Proc. ICMI.
Snavely, N., Seitz, S. M., and Szeliski, R. (2008). Model-
ing the world from internet photo collections. IJCV,
80(2):189–210.
Stew
´
enius, H., Engels, C., and Nist
´
er, D. (2006). Recent
developments on direct relative orientation. ISPRS,
60:284–294.
Strecha, C., von Hansen, W., Gool, L. V., Fua, P., and
Thoennessen, U. (2008). On benchmarking camera
calibration and multi-view stereo for high resolution
imagery. CVPR, 0:1–8.
Svoboda, T., Martinec, D., and Pajdla, T. (2005). A con-
venient multi-camera self-calibration for virtual envi-
ronments. PRESENCE: Teleoperators and Virtual En-
vironments, 14(4):407–422.
Voit, M. and Stiefelhagen, R. (2010). 3-D user-perspective,
voxel-based estimation of visual focus of attention in
dynamic meeting scenarios. ICMI-MLMI.
Xiong, Y. and Quek, F. (2005). Meeting room configuration
and multiple camera calibration in meeting analysis.
Proc. ICMI.
Zhang, Z. (2000). A flexible new technique for camera cal-
ibration. TPAMI, 22(11):1330–1334.
ICPRAM 2012 - International Conference on Pattern Recognition Applications and Methods
336