A LOCAL-GLOBAL MODEL FOR MULTIAGENT SYSTEMS - Sheaves on the Category MAS

Thomas Soboll, Ulrike Golas

2012

Abstract

In multiagent systems, each agent has its own local view of the environment. Nevertheless, agents try to cooperate to reach a common global goal. In this paper, we use a suitable Grothendieck topology and sheaves to model the agents’ local data and their communication.

References

  1. Kashiwara, M. and Schapira, P. (2006). Categories and Sheaves, volume 332 of Grundlehren der Mathematischen Wissenschaften. Springer.
  2. MacLane, S. and Moerdijk, I. (1994). Sheaves in Geometry and Logic: A First Introduction to Topos Theory. Springer. Corrected ed.
  3. Mumford, D. (1999). The Red Book of Varieties and Schemes. Springer. 2nd exp. ed.
  4. Pfalzgraf, J. and Soboll, T. (2007). On a General Notion of Transformation for Multiagent Systems. In Proceedings of IDPT 7807. SDPS.
Download


Paper Citation


in Harvard Style

Soboll T. and Golas U. (2012). A LOCAL-GLOBAL MODEL FOR MULTIAGENT SYSTEMS - Sheaves on the Category MAS . In Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART, ISBN 978-989-8425-96-6, pages 331-334. DOI: 10.5220/0003742103310334


in Bibtex Style

@conference{icaart12,
author={Thomas Soboll and Ulrike Golas},
title={A LOCAL-GLOBAL MODEL FOR MULTIAGENT SYSTEMS - Sheaves on the Category MAS},
booktitle={Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,},
year={2012},
pages={331-334},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0003742103310334},
isbn={978-989-8425-96-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Conference on Agents and Artificial Intelligence - Volume 2: ICAART,
TI - A LOCAL-GLOBAL MODEL FOR MULTIAGENT SYSTEMS - Sheaves on the Category MAS
SN - 978-989-8425-96-6
AU - Soboll T.
AU - Golas U.
PY - 2012
SP - 331
EP - 334
DO - 10.5220/0003742103310334