Edelsbrunner, H. (2001). Geometry and Topology for Mesh
Generation. Cambridge University Press, New York,
NY, USA.
Edelsbrunner, H., Harer, J., Mascarenhas, A., Pascucci, V.,
and Snoeyink, J. (2008). Time-varying reeb graphs
for continuous space-time data. Computational Ge-
ometry, 41(3):149 – 166.
Edelsbrunner, H., Harer, J., and Zomorodian, A.(2003). Hi-
erarchical morse-smale complexes for piecewise lin-
ear 2-manifolds. Discrete and Computational Geom-
etry, 30(1):87–107.
Falcidieno, B. (2004). Aim@shape project presentation.
In Shape Modeling Applications, 2004. Proceedings,
page 329.
Hilaga, M., Shinagawa, Y., Kohmura, T., and Kunii, T. L.
(2001). Topology matching for fully automatic simi-
larity estimation of 3d shapes. In Proceedings of the
28th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’01, pages 203–
212, New York, NY, USA. ACM.
Katz, S., Leifman, G., and Tal, A. (2005). Mesh segmen-
tation using feature point and core extraction. The
Visual Computer, 21:649–658. 10.1007/s00371-005-
0344-9.
Knuth, D. E. (1998). The Art of Computer Programming
Vol. 2: Seminumerical Algorithms. Addison Wesley,
3rd edition.
Lazarus, F. and Verroust, A. (1999). Level set diagrams
of polyhedral objects. In Fifth Symposium on Solid
Modeling, pages 130–140. ACM.
Milnor, J. (1963). Morse Theory. Princeton University
Press.
Mortara, M. and Patane, G. (2002). Affine-invariant skele-
ton of 3d shapes. Shape Modeling and Applications,
International Conference on, 0:245–252.
Novotni, M., Klein, R., and Ii, I. F. I. (2002). Computing
geodesic distances on triangular meshes. In In Proc.
of WSCG2002, pages 341–347.
Pascucci, V., Scorzelli, G., Bremer, P.-T., and Mascarenhas,
A. (2007). Robust on-line computation of reeb graphs:
simplicity and speed. ACM Trans. Graph., 26.
Patane, G., Spagnuolo, M., and Falcidieno, B. (2009). A
minimal contouring approach to the computation of
the reeb graph. IEEE Transactions on Visualization
and Computer Graphics, 15:583–595.
Reeb, G. (1946). Sur les points singuliers d une forme de
pfaff completement integrable ou d une fonction nu-
merique. In Comptes rendus de l’Academie des Sci-
ences 222, pages 847–849.
Safar, M., Alenzi, K., and Albehairy, S. (2009). Counting
cycles in an undirected graph using dfs-xor algorithm.
In Networked Digital Technologies, 2009. NDT ’09.
First International Conference on, pages 132 –139.
Schaefer, S. and Yuksel, C. (2007). Example-based skeleton
extraction. In Proceedings of the fifth Eurographics
symposium on Geometry processing, pages 153–162,
Aire-la-Ville, Switzerland. Eurographics Association.
Sebastian, T., Klein, P., and Kimia, B. (2002). Shock-based
indexing into large shape databases. In Computer
Vision ECCV 2002, volume 2352 of Lecture Notes
in Computer Science, pages 83–98. Springer Berlin /
Heidelberg.
Shapira, L., Shamir, A., and Cohen-Or, D. (2008). Consis-
tent mesh partitioning and skeletonization using the
shape diameter function. Visual Comput, 24:249–259.
Shinagawa, Y. and Kunii, T. (1991). Constructing a reeb
graph automatically from cross sections. Computer
Graphics and Applications, IEEE, 11(6):44 –51.
Shinagawa, Y., Kunii, T., and Kergosien, Y. (1991). Surface
coding based on morse theory. Computer Graphics
and Applications, IEEE, 11(5):66 –78.
Sundar, H., Silver, D., Gagvani, N., and Dickinson, S.
(2003). Skeleton based shape matching and retrieval.
In Shape Modeling International, 2003, pages 130 –
139.
Tierny, J., Vandeborre, J., and Daoudi, M. (2006). 3d mesh
skeleton extraction using topological and geometrical
analyses. In 14th Pacific Conference on Computer
Graphics and Applications. Pacific Graphics.
COMPUTING THE REEB GRAPH FOR TRIANGLE MESHES WITH ACTIVE CONTOURS
89